
B G S INSTITUTE OF TECHNOLOGY

BG Nagara-571448, Mandya

Department of Engineering Physics

COURSE FILE 2019 BATCH – I SEM

Course Coordinator

SHANKARA S R

Designation

Assistant Professor

Course Name

Engineering Physics

Course Code

18PHY12/22

Coordinator

Signature of HOD

Dept of Pro Hagincering BGS Institute of Technology

B G Nagara- 571448

redur : 31c.

Nagamangala Taiuk, Mandya District.

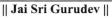
II Jai Sri Gurudev II

B G S INSTITUTE OF TECHNOLOGY B G NAGAR-571448

Vision of the Institute

BGSIT is committed to the cause of creating tomorrow's engineers by providing quality education inculcating ethical values.

Mission of the Institute


- Imparting quality technical education by nurturing a conducive learning environment.
- Offering professional training to meet industry requirements.
- Providing education with a moral cultural base and spiritual touch.

Principal

BGS Institute of Technology

B G Nagara - 571448,

Nagamangala Tq, Mandya Dist.

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

VISION

To enrich young minds with the knowledge of engineering physics by providing quality education and inculcating ethical values.

MISSION

- 1. To stimulate their technical knowledge by imparting basics of Engineering Physics.
- 2. To inculcate analytical thinking in students thereby enabling them to contribute to the betterment of society.

Course Learning Objectives

- 1. Students will demonstrate and understand the impact of physics concepts on applications for society.
- 2. Learn the basic concepts of physics, which are very much essential for understanding and solving challenges.
- 3. Gain the knowledge of newer concepts in physics for the better appreciation in technology.

HOD

Dept. of Pre Engineering BGS Institute of Technology

B G Nagara- 571448 Nagamangala Taluk, Mandya District.

BGS INSTITUTE OF TECHNOLOGY

BG Nagara - 571448, Karnataka, INDIA.

DEPARTMENT OF PHYSICS

BGSIT

Program outcomes

- 1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- 2. Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- 3. Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for the public health and safety, and the cultural, societal and environmental considerations.
- **4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
- **5. Modern Tool Usage:** Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- 7. Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- **9. Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

B G Nagar 571 448

mudery 1

HOD
Dept. of Pre Engineering
BGS Institute of Technology
B G Nagara- 571448
Nagamangala Taluk, Mandya District.

|| JAI SRI GURUDEV ||

B G Nagara, Nagamangala Taluk, Mandya District, Karnataka State, INDIA - 571448

	CALE	NDAR	OF EV	ENTS F	OR TH	E ACA	DEMIC	YEAR 2019-20 (ODD SEM) BE, MBA & M.TECH
	Mon	Tue	Wed	Thu	Fri	Sat	Sun	ACTIVITIES
A				1	2	3	4	1 - Registration & Commencement of 3 rd
U G	5	6	7	8	9	10	11	Semester Classes
U	12	13	14	15	16	17	18	5 - Registration & Commencement of 1 st
S	19	20	21	22	23	24	25	Semester Classes
T	26	27	28	29	30	31		12 - Bakrid
		Numl	oer of '	Worki	ng Day	ys - 25		15 - Independence Day
S	Mon	Tue	Wed	Thu	Fri	Sat	Sun	在原本的原本的 医正面 新草原 医生态
E							1	2 - Ganesha Chaturti
P	2	3	4	5	6	7	8	10 - Moharam
E	9	10	11	12	13	14	15	25, 26, 27 - Test 1
M	16	17	18	19	20	21	22	28 - Mahalaya Amavasye
В	23	24	25	26	27	28	29	
E	30							
R		Num	ber of	Worki	ng Da	ys - 22		
	Mon	Tue	Wed	Thu	Fri	Sat	Sun	
OC		1	2	3	4	5	6	2 - Gandhi Jayanti
T	7	8	9	10	11	12	13	7 - Aayudha Pooja 8 - Vijayadashami
0	14	15	16	17	18	19	20	11 - Test 1 Progress Report Dispatch
B	21	22	23	24	25	26	27	12 - Class Teachers Meeting
R	28	29	30	31				24, 25, 26 - Test 2
		Numb	er of V	Worki	ng Day	vs - 23		29 - Balipadyami
N	Mon	Tue	Wed	Thu	Fri	Sat	Sun	
OV					1	2	3	1 - Kannada Rajyotsava
E	4	5	6	7	8	9	10	8 - Test 2 Progress Report Dispatch
M	11	12	13	14	15	16	17	9 - Class Teachers Meeting
B	18	19	20	21	22	23	24	15 - Kanakadasa Jayanti
E	25	26	27	28	29	30		· ·

1	IVIOII	Tue	weu	Inu	FII	Sat	Sun
O					1	2	3
E	4	5	6	7	8	9	10
M	11	12	13	14	15	16	17
В	18	19	20	21	22	23	24
E	25	26	27	28	29	30	
R		Numb	er of V	Vorki	1g Day	s - 24	

D	Mon	Tue	Wed	Thu	Fri	Sat	Sun		
E					•		1		
C	2	3	4	5	6	7	8		
E	9	10	11	12	13	14	15		
M	16	17	18	. 19	20	21	22		
B	23	24	25	26	27	28	29		
R	30	31							
	Number of Working Days - 12								

5, 6, 7 - Test 3

12 - Test 3 Progress Report Dispatch

13 - Class Teachers Meeting

14 - Last Working Day

25 - Christmas

BGSIT IS COMMITTED TO THE CAUSE OF CREATING TOMORROW'S ENGINEERS BY PROVIDING QUALITY EDUCATION INCULCATING ETHICAL VALUES.

Theory Examinations 1-1-2020 to 30-01-2020	Practical Examinations	16-12-2019 to 30-12-2019
Commencement of EVEN Semester HOD 10-02-2020	Theory Examinations	90130
Fraingering 10-02-2020	Commencement of EVEN Semester	10-02-2020

Dr. B.K.Raghavendra **Academic Incharge**

BGS Institute of Technology B G Nagara- 571448 Nagamangala Taluk, Mandya District.

Dr. B.K.Narendra Principal

" Jai Sri Gurudev "

B.G.S. Institute of Technology, B.G. Nagara-571448

Department of Pre - engineering

Time Table for First Semester

Period From: 5th - August - 2019 to 14th - December - 2019

Electronics & Communication Engg.

Room No: 308

Day Time	09:00AM-09:55 AM	09:55AM-10:50 AM	11:55AM-12:50PM			
Monday	18ELE-13 (PGB)	18MAT-11 (HLP)	18CIV-14 (AMR)	18PHY-12 (KNR)		
Tuesday	HRC	HR CLASS 18PHY-12 (SRS) 18MAT (HLP				
Wednesday	C	COMPUTER AIDED EN	NGINEERING DRAWI RY (PH)	NG		
Thursday	18PHY-12 (KNR)	18PHYL-16(LAB B2)/18ELEL-17(B3)/18CED-15(B1)			
Friday	18CIV-14 (AMR)	LAB 18PHYL-16(B3)/18ELEL-17(B1)/18CED-15(B2)				
Saturday	18FLF-13 18MAT-11		18CIV-14 (AMR)	18PHY-12 (KNR)		
	Subject		Sub	ject Code		

01:50PM-02:40PM	02:40PM-03:30PM	03:30PM-04:20PM					
18ELE-13 (PGB)							
18PHYL-16(LAB B1)/18ELEL-17(B2)/	18CED-15(B3)					
18CIV-14 (AMR)	18ELE-13 (PGB)						
18MAT-11 (HLP)	18PHY-12 (SRS) 18ELE- (PGB)						
CAED LAB (B1/B2/B3)							
18CIV-14 (AMR)	18MAT-11 (HLP)						
Staff	Name						

- 1. Engineering Mathematics-I
- 2. Engineering Physics
- 3. Basic Electrical Engineering
- 4. Civil Engineering & Mechanics
- 5. Computer Aided Engineering
- 6. Engineering Physics Lab
- 7. Basic Electrical Engineering Lab

8. English-I

SECTION - B

Shankara S R

18MAT-11 18PHY-12 18ELE-13 18CIV-14 18CED-15 18PHYL-16 18ELEL-17

18EGH-18

Staff Name

Parashivamurthy H L (HLP)

Shankara S R (SRS) / Ranjitha K N (KNR)

Puneeth Kumar G B (PGB)

Ashwini M R (AMR)

Pradeep H (PH)

Shankara S R (SRS) / Ranjitha K N (KNR)

Mohankumar K S (KSM)

Verified by

Dept. by Par Bhillicering BGS Institute of Technology,

B G Nagara- 571448

mangala Taiuk, Mandya District.

Principal

Dr Narendra BK

B.G.S. INSTITUTE OF TECHNOLOGY

Orce

B.G. NAGAR - 571 448

" Jai Sri Gurudev "

B.G.S. Institute of Technology, B.G. Nagara-571448

Department of Pre - engineering

Time Table for First Semester

Period From: 5th - August - 2019 to 14th - December - 2019

Civil Engg.

				20				
Day Time	09:00AM-09:55 AM	09:55AM-10:50 AM	11:00AM-11:55AM	11:55AM-12:50PM		01:50PM-02:40PM	02:40PM-03:30PM	03:30PM-04:20PM
Monday	18ELE-13 (PPS)	18MAT-11 (SHN)	18CIV-14 (GR)			8CED-15(C3)		
Tuesday	18MAT-11 (SHN)	18CIV-14 (GR)	HR	CLASS		18CIV-14 18ELE-13 (PPS)		2 2 8
Wednesday	18PHY-12 (SRS)	18PHYL-16	LAB 6(C2)/18ELEL-17(C3)/18CED-15(C1)			18CIV-14 (GR)	18PHY-12 (SRS)	
Thursday	18ELE-13 (PPS)	18MAT-11 (SHN)	18PHY-12 (SRS)	18ELE-13 (PPS)		CAED LAB (C1/C2/C3)		
Friday	COMPUTER AIDED ENGINEERING DRAWING THEORY (SN)					18CIV-14 (GR)	18EGH-18	
Saturday	18MAT-11 (SHN)	18PHYL-16	LAB (C3)/18ELEL-17(C1)/18	3CED-15(C2)		18MAT-11 18PHY-12 18ELE-13 (SHN) (SRS) (PPS)		

01:50PM-02:40PM	02:40PM-03:30PM	03:30PM-04:20PM
18PHYL-16	LAB (C1)/18ELEL-17(C2)/1	18CED-15(C3)
18CIV-14 (GR)	18ELE-13 (PPS)	
18CIV-14 (GR)	18PHY-12 (SRS)	
	CAED LAB (C1/C2/C3)	H 500
18CIV-14 (GR)	18EGH-18	
18MAT-11 (SHN)	18PHY-12 (SRS)	18ELE-13 (PPS)
	Staff Name	

Room No: Mechanical Block

Subject

SECTION - C

1. Engineering Mathematics-I

2. Engineering Physics

3. Basic Electrical Engineering

4. Civil Engineering & Mechanics

5. Computer Aided Engineering

6. Engineering Physics Lab

7. Basic Electrical Engineering Lab

Subject Code 18MA·T-11

18PHY-12

18ELE-13

18CIV-14

18CED-15

18PHYL-16

18ELEL-17

Staff Name

Shwetha H N (SHN)

Shankara S R (SRS)

Prafulla P S (PSS)

Gomathi R

Sharath N (SN)

Shankara S R (SRS) / Ranjitha K N (KNR)

Goutham V (GV)

Shankara S R

Verified by Dr Yhvara a B K

Dept. of Pre Engineering BGS Institute of Technology,

> R G Nagara- 571448 .. standys Districk

Principal Dr Narendra B K PRINCIPAL

3.G.S. INSTITUTE OF TECHNOLOGY

B.G. NAGAR - 571 448

N

The second secon	Course Code	18PHY12/22 3 Hours	
1-0-5	SEE		
Marks	Total	100 Marks	
_	- 04	(A CONTROL OF THE CO	

COURSE OBJECTIVES:

This course will enable students to learn the basic concepts in Physics which are very much essential in understanding and solving engineering related challenges.

COURSE CONTENTS:

::MODULE - 1:: (10 Hours)

Oscillations and Waves:

Free Oscillations: Definition of SHM, derivation of equation for SHM, Mechanical simple harmonic oscillators (mass suspended to spring oscillator), complex notation and phasor representation of simple harmonic motion. Equation of motion for free oscillations, Natural frequency of oscillations.

Damped and forced oscillations: Theory of damped oscillations: over damping, critical & under damping, quality factor. Theory of forced oscillations and resonance, Sharpness of resonance. One example for mechanical resonance.

Shock waves: Mach number, Properties of Shock waves, control volume. Laws of conservation of mass, energy and momentum. Construction and working of Reddy shock tube, applications of shock waves. Numerical problems.

::MODULE - 2:: (10 Hours)

Elastic properties of materials:

Elasticity: concept of elasticity, plasticity, stress, strain, tensile stress, shear stress, compressive stress, strain hardening and strain softening, failure (fracture/fatigue), Hooke's law, different elastic moduli: Poisson's ratio, Expression for Young's modulus (Y), Bulk modulus (K) and Rigidity modulus (n) in terms of α and β. Relation between Y, n and K.

Bending of beams: Neutral surface and neutral plane, Derivation of expression for bending moment of a beam with circular and rectangular cross section. Single cantilever derivation of expression for Young's modulus.

Torsion of cylinder: Expression for couple per unit twist of a solid cylinder (Derivation), Torsional pendulum-Expression for period of oscillation. Numerical problems.

::MODULE - 3:: (10 Hours)

Crystal structure and Optical fibers:

Crystal structure: Space lattice, Bravais lattice-Unit cell, Primitive cell. Lattice parameters. Crystal systems. Direction and planes in a crystal. Miller indices. Expression for inter – planar spacing. Co-ordination number. Atomicpacking factors (SC,FCC,BCC). Bragg's law, Determination of crystal structure using Bragg's X-ray difractometer. Polymarphism and Allotropy. Crystal Structure of Diamond.

Optical fibers: Propagation mechanism, angle of acceptance. Numerical aperture. Modes of propagation and Types of optical fibers. Attenuation: Causes of attenuation and Mention of expression for attenuation coefficient, Discussion of block diagram of point to point communication. Applications. Numerical problems.

::MODULE - 4:: (10 Hours)

Quantum Mechanics and Lasers:

Quantum Mechanics: Introduction to Quantum mechanics, Wave nature of particles, Heisenberg's uncertainty principle and applications (non confinement of electron in the nucleus), Schrodinger time independent wave equation, Significance of Wave function, Normalization, Particle in a box, Energy eigen values of a particle in a box and probability densities.

Lasers: Review of spontaneous and stimulated processes, Einstein's coefficients (Derivation of expression for energy density). Requisites of a Laser system. Conditions for laser action. Principle, Construction and working of CO₂ and semiconductor Lasers. Application of Lasers in Defense (Laser range finder), Engineering (Data storage).

Numerical problems.

::MODULE - 5:: (10 Hours)

Material Science:

Quantum Free electron theory of metals: Review of classical free electron theory, mention of failures. Assumptions of Quantum Free electron theory, Mention of Expression for density of states, Fermi-Dirac statistics (qualitative), Fermi factor, Fermi level, Derivation of the expression for Fermi energy, Success of OFET.

Physics of Semiconductor: Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band, Hole concentration in valance band (Mention the expression), Conductivity of semiconductors(Derivation).

Dielectric materials: Polar and non-polar dielectrics, internal fields in a solid, Clausius - Mossotti equation, (Derivation), mention of solid, liquid and gaseous dielectrics with one example each. Numerical problems.

COURSE OUTCOMES:

Upon completion of this course, students will be able to

- 1. Memorize the setup of differential equations for the types of oscillations and analyze the solutions and also to recognize the importance of shock waves and their applications.
- 2. Describe the Elastic properties and Electrical properties of the materials and identify their applications in Engineering.
- 3. Study of Crystal structure and applications are to boost the technical skills and its applications.
- 4. Explain the principle, conditions, requisites and generation of laser and its different applications mainly optical fiber communication through the study of construction, working and types of optical fibers
- 5. Realize the various electrical and thermal properties of materials like conductors, semiconductors and dielectrics using different theoretical models.

RECOMMENDED LEARNING RESOURCES:

Text Books:

- 1. MN Avadhanulu and PG Kshirsagar, "A Text book of Engineering Physics", 10th revised Ed, S. Chand and Company Ltd, New Delhi.
- 2. Arthur Beiser, "Concepts of Modern Physics", 6th Ed., Tata McGraw Hill Edu Pvt Ltd, New Delhi, 2006.
- 3. BB Laud, "Lasers and Non-Linear Optics", 3rd Ed., New Age International Publishers, 2011.
- 4. Gaur and Gupta, "Engineering Physics", Dhanpat Rai Publications, 2017.

Reference Books:

- M. K. Verma, "Introduction to Mechanics", 2nd Ed., University Press (India) Pvt. Ltd., Hyderabad, 2009.
- 2. O. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010.
- 3. B. G. Streetman, "Solid State Electronic Devices", Prentice Hall of India, 1995.
- 4. MK Harbola, "Engineering Mechanics", 2nd Ed., Cengage publications, New Delhi, 2009.
- 5. Chintoo S. Kumar, K. Takayama and K. P. J. Reddy, "Shock Waves made simple", Wiley India Pvt. Ltd., New Delhi, 2014.
- 6. David Griffiths, "Introduction to Electrodynamics", 4th Ed., Cambridge University Press, 2017,

Planella

HOD

Dept. of Pre Engineering

BGS Institute of Technology

B G Nagara- 571448

Nagamangala Taiuk, Mandya District.

Semester	I/II	Course Title	Engineering Physics Lab	Course Code	18PHYL16/2 6				
Teaching Period	42 Hours	L-T-P- TL	0-0-3-3	SEE	3 Hours				
CIE	40 Marks	SEE	60 Marks	Total	100 Marks				
	CREDITS – 02								

COURSE OBJECTIVES:

- To realize experimentally, the mechanical, electrical and thermal properties of materials, concept of waves and oscillations.
- Design simple circuits and hence study the characteristics of semiconductor devices.

COURSE CONTENTS:

- 1. Determination of spring constants in Series and Parallel combinations.
- 2. n & I by Torsional pendulum.
- 3. Single Cantilever Experiment.
- 4. Radius of curvature of plano convex lens using Newton's rings.
- 5. LCR Resonance (Series and Parallel).
- 6. Study of Zener diode characteristics.
- 7. Acceptance angle and Numerical aperture of an optical fiber.
- 8. Wavelength of semiconductor laser using Laser diffraction.
- 9. Estimation of Fermi Energy of Copper.
- 10. Study of Transistor characteristics.
- 11. Study of Photodiode characteristics.
- 12. Calculation of Dielectric constant by RC charging and discharging.

COURSE OUTCOMES:

Upon completion of this course, students will be able to:

- 1. **Demonstrate** the phenomenon of interference and diffraction using simple experiments.
- 2. **Interpret** the characteristics of bipolar junction transistors and photo-diode and also to **Analyze** the resonance concept and its applications in electrical circuits.
- 3. **Determine** the strength of the given elastic materials using bending and torsion methods and also the force constant of springs.
- 4. **Calculate** the electrical properties like Dielectric Constant of the Dielectric material, Fermi energy of a metal through simple experiments and **Compare** the theoretical and experimental values.
- 5. **Visualize** laser source and application of laser in the optical fiber and diffraction experiments to **calculate** the related quantities.
- 6. **Practice** the measurement of quantities, honest recording, representing and analyzing the data and **expressing** the final results.

CONDUCTION OF PRACTICAL EXAMINATION:

- 10 experiments are mandatory. Student has to perform two experiments in the SEE.
- Remaining two experiments must be introduced as compulsory demo experiment.

Seaclas

HOD

Dept. of Pre Engineering

BGS Institute of Technology

B G Nagara- 571448

Nagamangala Taiuk, Manuya District.

Department of Physics (PHY)

6. Course Information

6.2

Semester: 1

Section: C

Course: ENGINEERING PHYSICS

P		Planned		v	Execution			
e r i o d	Date	Торіс	Source material to be referred	Date	Topic	Source material to be referred		
0			1					
1	2019-08-19	Free Oscillations: Definition of SHM, derivation of equation for SHM	-	2019-08-19	Free Oscillations: Definition of SHM, derivation of equation for SHM	-		
2	2019-08-20	Equation of motion for free oscillations	-	2019-08-20	Equation of motion for free oscillations	-		
3	2019-08-21	Natural frequency of oscillations.	-	2019-08-21	Equation of motion for free oscillations	-		
4	2019-08-21	Mechanical simple harmonic oscillators (mass suspended to spring oscillator)	-	2019-08-21	Natural frequency of oscillations.	-		
5	2019-08-22	Damped and forced oscillations: Theory of damped oscillations: over damping		2019-08-22	Mechanical simple harmonic oscillators (mass suspended to spring oscillator)	-		
6	2019-08-26	quality factor	-	2019-08-26	Damped and forced oscillations: Theory of damped oscillations: over damping	-		
7	2019-08-27	critical & under damping	-	2019-08-26	quality factor	- ,		
8	2019-08-28	Theory of forced oscillations and resonance	-	2019-08-27	critical & under damping	-		
9	2019-08-28	Sharpness of resonance, One example for mechanical resonance.	-	2019-08-28	Theory of forced oscillations and resonance	-		
12	2019-08-29	Mach number, Properties of Shock waves, control volume	-	2019-11-20	Neutral surface and neutral plane, Derivation of expression for bending moment	-		
14	2019-08-31	Laws of conservation of mass, energy and momentum, Construction and working of Reddy shock tube	-	2019-11-20	Bending moment of a beam with circular and rectangularcross section, Single cantilever	-		

16	2019-09-04	applications of shock waves, Numerical	-	2019-11-21	derivation of expression for Young's' modulus.	-
17	2019-09-04	problems. Numerical problems.		2019-09-04	applications of shock waves, Numerical problems.	Ref 2
			2			
10	2019-08-28	Bulk modulus (K) and Rigidity modulus (n) in terms of and p, Relation between Y, n and K.	-	2019-08-28	Sharpness of resonance, One example for mechanical resonance.	- -
11	2019-08-28	Neutral surface and neutral plane, Derivation of expression for bending moment		2019-11-18	Bulk modulus (K) and Rigidity modulus(n) in terms of and p, Relation between Y, n and K.	-
13	2019-08-29	Bending moment of a beam with circular and rectangular cross section, Single cantilever	- ,	2019-08-29	Mach number, Properties of Shock waves, control volume	Ref 2
15	2019-08-31	derivation of expression for Young's' modulus.	- - - -	2019-08-31	Laws of conservation of mass, energy and momentum, Construction and working of Reddy shock tube	Ref 2
18	2019-09-04	Expression for couple per unit twist of a solid cylinder (Derivation)	-	2019-09-04	Numerical problems.	Ref 2
19	2019-09-04	Torsional pendulum- Expression for period of oscillation	-	2019-11-23	Expression for couple per unit twist of a solid cylinder (Derivation)	-
21	2019-09-05	Numerical problems	-	2019-09-05	Review of spontaneous and stimulated processes	Ref 1
	•		3			
23	2019-09-07	Crystal structure: Space lattice, Bravais lattice–Unit cell, Primitive cell	-	2019-09-09	Requisites of a Laser system, Conditions for laser action	-
24	2019-09-09	Lattice parameters, Crystal systems, Direction and planes in a crystal	- v	2019-10-24	Crystal structure: Space lattice, Bravais lattice–Unit cell, Primitive cell	-
26	2019-09-11	Miller indices, Expression for inter – planar spacing, Co-ordination number	-	2019-09-11	Principle, Construction and working of CO2 and semiconductor Lasers	-
27	2019-09-11	Atomicpacking factors (SC,FCC,BCC)	-	2019-10-30	Miller indices, Expression for inter – planar spacing, Co-ordination number	-
29	2019-09-12	Bragg's law, Determination of crystal structure using Bragg's X-ray difractometer.	-	2019-09-12	Einstein's coefficients (Derivation of expression for energy density)	-

31	2019-09-14	Propagation mechanism, angle of acceptance		2019-09-16	Numerical problems., Application of Lasers in	-
					industrial field	
32	2019-09-16	Numerical aperture, Modes of propagation and Types of optical fibers	-	2019-09-30	Propagation mechanism, angle of acceptance	-
34	2019-09-18	Attenuation: Causes of	-	2019-09-16	Numerical problems.	-
•	2	attenuation and Mention of			-	
		expression for attenuation			A	
	*	coefficient, Discussion of				
		block diagram of point to			2	
		point communication				
35	2019-09-18	Applications	- a 6 km	2019-10-10	Attenuation: Causes of	-
		••			attenuation and Mention of	
					expression for attenuation	
		a.			coefficient, Discussion of	
		2			block diagram of point to	
					point communication	
36	2019-09-19	Numerical problems.	-	2019-10-14	Applications	-
37	2019-09-21	Expression for inter –	Ref 3	2019-10-15	Numerical problems.	-
		planar spacing				
38	2019-09-23	Co-ordination number	Ref 3	2019-10-16	Expression for inter –	Ref 3
			£		planar spacing	
39	2019-09-25	Atomicpacking factors (SC, BCC), FCC, Bragg's law	Ref 3	2019-10-17	Co-ordination number	Ref 3
40	2019-09-25	Determination of crystal	Ref 2	2019-10-21	Atomicpacking factors (SC,	Ref 3
		structure using Bragg's X-			BCC), FCC, Bragg's law	
		ray difractometer.				
			4	AT 2 % ARX	a e ma j secure a est	
20	2019-09-05	Review of spontaneous and	-	2019-11-25	Torsional pendulum-	-
		stimulated processes	27		Expression for period of	
				-	oscillation	
22	2019-09-05	Requisites of a Laser	-	2019-11-27	Numerical problems	-
		system, Conditions for laser				
		action				
25	2019-09-09	Principle, Construction	-	2019-10-26	Lattice parameters, Crystal	-
		and working of CO2 and			systems, Direction and	
		semiconductor Lasers	71		planes in a crystal	
28	2019-09-11	Einstein's coefficients	-	2019-10-31	Atomicpacking factors (SC,	-
		(Derivation of expression			FCC, BCC)	
		for energy density)				
30	2019-09-12	Numerical problems.,	-	2019-09-12	21466 5 1411, 2 616111111111111	-
	20	Application of Lasers in			of crystal structure	
		industrial field			using Bragg's X-ray	
	and the same of the same				difractometer.	
33	2019-09-16	Numerical problems.	-	2019-10-09	Numerical aperture, Modes	
					of propagation and Types of	
	1	I .	1	1	optical fibers	II.

41	2019-09-26	Quantum Mechanics:		2019-10-23	Determination of crystal	Ref 2
41	2017-07-20	Introduction to Quantum mechanics, Wave nature of	-	2017-10-23	structure using Bragg's X-ray diffractometer.	KCI Z
		particles			•	
42	2019-09-28	Heisenberg's uncertainty	-	2019-09-18	Quantum Mechanics:	-
		principle and applications			Introduction to Quantum	
		(non confinement of			mechanics, Wave nature of	
		electron in the nucleus),			particles	
		Schrodinger time				7
10	2010 00 20	independent wave equation	2	2019-09-19		
43	2019-09-30	Significance of Wave		2019-09-19	Heisenberg's uncertainty	-
	1.03	function, Normalization			principle and applications	
	в 1				(non confinement of	
	c 70 U 358			2.5	electron in the nucleus),	
13	25				Schrodinger time	28
11	2019-10-09	Particle in a box		2019-09-21	independent wave equation	
44	2019-10-09	Particle in a box	-	2017-07-21	Significance of Wave function, Normalization	-
45	2019-10-09	Energy eigen values of	_	2019-09-23	Particle in a box	_
43	2019-10-09	a particle in a box and	-	2017 07 23	Particle in a box	-
		probability densities.			100	
46	2019-10-10	Review of spontaneous	_	2019-09-25	Energy eigen values of	_
10		and stimulated processes,		11	a particle in a box and	
		Einstein's coefficients			probability densities.	
		(Derivation of expression	×		producting densities.	
		for energy density)		121		
	2 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1		5		L	1
47	2019-10-19	Assumptions of Quantum	-	2019-09-26	Review of spontaneous	-
		Free electron theory,			and stimulated processes,	
		Mention of Expression for	8	8	Einstein's coefficients	
1	n	density of states	. 8		(Derivation of expression	
			# # # # # # # # # # # # # # # # # # #		for energy density)	
48	2019-10-21	Fermi-Dirac statistics	-	2019-10-24	Assumptions of Quantum	-
		(qualitative), Fermi factor	0		Free electron theory,	
					Mention of Expression for	
		2			density of states	
49	2019-10-23	Fermi level, Derivation of	-	2019-10-26	Fermi-Dirac statistics	-
		the expression for Fermi	8		(qualitative), Fermi factor	
		energy.		5	3	
50	2019-10-23	Physics of Semiconductor:	-	2019-10-30	Fermi level, Derivation of	-
		Fermi level in intrinsic			the expression for Fermi	,
		semiconductors, Expression			energy.	
		for concentration of				
		electrons in conduction				
		band	6.			

51	2019-10-28	Hole concentration in	-	2019-10-31	Physics of Semiconductor:	-
		valance band (Mention the			Fermi level in intrinsic	
	*	expression)			semiconductors, Expression	
				-	for concentration of	
			5.		electrons in conduction	
			0		band	
52	2019-10-30	Conductivity of	-	2019-11-02	Hole concentration in	-
		semiconductors		2	valance band (Mention the	
		(Derivation).			expression)	
53	2019-10-30	Polar and non-polar	-	2019-11-04	Conductivity of	-
		dielectrics, internal fields in	20		semiconductors	
		a solid, Clausius - Mossotti			(Derivation).	4
		equation	3 1		*	
54	2019-10-31	(Derivation), mention of	-	2019-11-06	Polar and non-polar	-
		solid	a _		dielectrics, internal fields in	
		,	2		a solid, Clausius - Mossotti	
44.	a was a ave	P 2 2	s 2		equation	en la a
55	2019-11-02	liquid and gaseous	-	2019-11-13	(Derivation), mention of	-
		dielectrics with one	190		solid	
		example each, Numerical				
		problems.				
56	-	-		2019-11-14	liquid and gaseous	-
					dielectrics with one	
					example each, Numerical	
и		4			problems.	

Department of Physics (PHY)

6. Course Information

6.2

Semester: 1

Section: B

Course: ENGINEERING PHYSICS

P		Planned			Execution	
e r i o d	Date	Торіс	Source material to be referred	Date	Topic	Source material to be referred
	-		1	ļ	,	
1	2019-08-17	Free Oscillations: Definition of SHM, derivation of equation for SHM		2019-08-17	Free Oscillations: Definition of SHM, derivation of equation for SHM	
2	2019-08-19	Mechanical simple harmonic oscillators (mass suspended to spring oscillator), complex notation and phasor representation of simple harmonic motion	-	2019-08-19	Mechanical simple harmonic oscillators (mass suspended to spring oscillator), complex notation and phasor representation of simple harmonic motion	-
3	2019-08-20	Equation of motion for free oscillations	-	2019-08-20	Equation of motion for free oscillations	-
4	2019-08-22	Natural frequency of oscillations.	-	2019-08-22	Natural frequency of oscillations.	-
5	2019-08-22	Damped and forced oscillations: Theory of damped oscillations: over damping, critical & under damping	-	2019-08-22	Damped and forced oscillations: Theory of damped oscillations: over damping, critical & under damping	- 2 ·
6	2019-08-24	quality factor, Theory of forced oscillations and resonance	-	2019-08-26	quality factor, Theory of forced oscillations and resonance	-
7	2019-08-26	Sharpness of resonance, One example for mechanical resonance.	-	2019-08-27	Sharpness of resonance, One example for mechanical resonance.	-
8	2019-08-27	Mach number, Properties of Shock waves, control volume	-	2019-08-29	Mach number, Properties of Shock waves, control volume	-
9	2019-08-29	Laws of conservation of mass, energy and momentum, Construction and working of Reddy shock tube	- ,	2019-08-29	Laws of conservation of mass, energy and momentum, Construction and working of Reddy shock tube	-
10	2019-08-29	applications of shock waves, Numerical problems.	-	2019-08-31	applications of shock waves, Numerical problems.	-

			2			
41	2019-11-25	Concept of elasticity,	-	2019-11-12	Concept of elasticity,	-
	9	plasticity, stress, strain			plasticity, stress, strain	
12	2019-11-26	tensile stress, shear stress,	-	2019-11-14	tensile stress, shear stress,	-
		compressive stress, strain			compressive stress, strain	
		hardening and strain	8		hardening and strain	
		softening	9		softening	
43	2019-11-28	failure (fracture/fatigue),	-	2019-11-18	failure(fracture/fatigue),	-
		Hooke's law, different	5	8	Hooke's law, different	
		elastic moduH: Poisson's			elastic moduH: Poisson's	
		ratio, Expression for	*		ratio, Expression for	
	-	Young's modulus (Y)			Young's modulus (Y)	
14	2019-11-28	Bulk modulus (K) and	_	2019-11-19	Bulk modulus (K) and	
	= #	Rigidity modulus (n) in			Rigidity modulus(n) in	
		terms of and p, Relation			terms of and p, Relation	
		between Y, n and K.			between Y, n andK.	
15	2019-11-30	Neutral surface and neutral		2019-11-21	Neutral surface and neutral	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+3	2017 11-30	plane, Derivation of		2017 11 21		-
		-		=	plane, Derivation of	
		expression for bending			expression for bending	
16	2019-12-02	moment		2019-11-23	moment	
16	2019-12-02	Bending moment of a	-	2019-11-23	Bending moment of a	-
		beam with circular and	=		beam with circular and	
		rectangular cross section,		N .	rectangularcross section,	
	2010 10 00	Single cantilever			Single cantilever	
17	2019-12-03	derivation of expression for	-	2019-11-25	derivation of expression for	-
		Young's' modulus.			Young's' modulus.	
48	2019-12-09	Expression for couple per		2019-11-26	Expression for couple per	-
		unit twist of a solid cylinder			unit twist of a solid cylinder	
		(Derivation)			(Derivation)	
49	2019-12-10	Torsional pendulum-	-,	2019-11-28	Torsional pendulum-	-
		Expression for period of			Expression for period of	
		oscillation			oscillation	
50	2019-12-10	Numerical problems	-	2019-11-30	Numerical problems	-
			3		2	
21	2019-09-30	Crystal structure: Space		2019-09-19	Crystal structure: Space	
- 1		lattice, Bravais lattice–Unit	_		lattice, Bravais lattice–Unit	-
		cell, Primitive cell			cell, Primitive cell	
22	2019-10-01	Lattice parameters, Crystal	_	2019-09-21	Lattice parameters, Crystal	
44	2017 10 01	systems, Direction and	-	2017-07-21	systems, Direction and	-
		planes in a crystal				
23	2019-10-10	Miller indices, Expression		2019-09-23	planes in a crystal	
23	2015-10-10		-	2019-09-23	Miller indices, Expression	-
		for inter – planar spacing,		5.	for inter – planar spacing,	
14	2010 10 10	Co-ordination number		2010 00 04	Co-ordination number	
24	2019-10-10	Atomicpacking factors	-	2019-09-24	Atomicpacking factors (SC,	-
_	2010 12 1	(SC,FCC,BCC)			FCC, BCC)	
25	2019-10-12	Bragg's law, Determination	-	2019-09-26	Bragg's law, Determination	-
		of crystal structure			of crystal structure	
		using Bragg's X-ray			using Bragg's X-ray	
	1	difractometer.		1	difractometer.	

26	2019-10-14	Propagation mechanism, angle of acceptance	-	2019-09-30	Propagation mechanism, angle of acceptance	-
27	2019-10-15	Numerical aperture, Modes	-	2019-10-01	Numerical aperture, Modes	La des
		of propagation and Types of			of propagation and Types of	30
		optical fibers	2		optical fibers	
28	2019-10-17	Attenuation: Causes of		2019-10-10	Attenuation: Causes of	-
20		attenuation and Mention of			attenuation and Mention of	
		expression for attenuation	10		expression for attenuation	
		coefficient, Discussion of			coefficient, Discussion of	
		block diagram of point to		V2 80	block diagram of point to	
20	2019-10-17	point communication		2019-10-14	point communication	
29		Applications	-		Applications	-
30	2019-10-19	Numerical problems.	= ,	2019-10-15	Numerical problems.	-
			4			
11	2019-09-05	Quantum Mechanics:	-	2019-09-03	Quantum Mechanics:	-
		Introduction to Quantum	8		Introduction to Quantum	
		mechanics, Wave nature of			mechanics, Wave nature of	
		particles			particles	
12	2019-09-05	Heisenberg's uncertainty	_	2019-09-05	Heisenberg's uncertainty	
		principle and applications			principle and applications	
		(non confinement of	2		(non confinement of	
		electron in the nucleus),	į1	5	electron in the nucleus),	
		Schrodinger time	1 2		Schrodinger time	
		independent wave equation			independent wave equation	
13	2019-09-07	Significance of Wave	-	2019-09-05	Significance of Wave	_
		function, Normalization			function, Normalization	_
14	2019-09-09	Particle in a box	-	2019-09-07	Particle in a box	_
15	2019-09-12	Energy eigen values of	_	2019-09-09	Energy eigen values of	
13		a particle in a box and			a particle in a box and	-
		probability densities.	20		_	
16	2019-09-12	Review of spontaneous	_	2019-09-12	probability densities.	×
10	2015 05 12	and stimulated processes,	_	2017-07-12	Review of spontaneous	-
	×		8		and stimulated processes,	
	100	Einstein's coefficients	-		Einstein's coefficients	
		(Derivation of expression			(Derivation of expression	
17	2019-09-14	for energy density)		2010.00.10	for energy density)	8, 1
17	2019-09-14	Requisites of a Laser	- '	2019-09-12	Requisites of a Laser	-
	9	system, Conditions for laser	10		system, Conditions for laser	
10	2010 00 16	action			action	
18	2019-09-16	Principle, Construction	-	2019-09-16	Principle, Construction	-
		and working of CO2 and		0	and working of CO2 and	
		semiconductor Lasers			semiconductor Lasers	
19	2019-09-17	Application of Lasers in	-	2019-09-17	Application of Lasers in	-
		industrial field			industrial field	
20	2019-09-19	Numerical problems.	-	2019-09-19	Numerical problems.	-
			5			
31	2019-10-28	Quantum Free electron	-	2019-10-17	Quantum Free electron	-
		theory of metals: Review			theory of metals: Review	
		of classical free electron			of classical free electron	
		theory, mention of failures			10 10 10 10 10 10 10 10 10 10 10 10 10 1	
		monty, montion of familes	-		theory, mention of failures	

32	2019-10-31	Assumptions of Quantum	-	2019-10-19	Assumptions of Quantum	-
	8	Free electron theory,			Free electron theory,	
		Mention of Expression for			Mention of Expression for	
		density of states			density of states	
33	2019-10-31	Fermi-Dirac statistics	-	2019-10-21	Fermi-Dirac statistics	-
	2 2	(qualitative), Fermi factor			(qualitative), Fermi factor	
34	2019-11-02	Fermi level, Derivation of	-	2019-10-22	Fermi level, Derivation of	-
		the expression for Fermi		-	the expression for Fermi	
		energy.	ii ii		energy.	
35	2019-11-04	Physics of Semiconductor:	, -	2019-10-24	Physics of Semiconductor:	-
		Fermi level in intrinsic			Fermi level in intrinsic	
		semiconductors, Expression			semiconductors, Expression	
		for concentration of			for concentration of	0
		electrons in conduction			electrons in conduction	
	2	band			band	
36	2019-11-05	Hole concentration in	-	2019-10-24	Hole concentration in	- 1
	90	valance band (Mention the			valance band (Mention the	
		expression)	10		expression)	
37	2019-11-07	Conductivity of	-	2019-10-26	Conductivity of	-
		semiconductors			semiconductors	
	A A SHARE WAY	(Derivation).			(Derivation).	
38	2019-11-07	Polar and non-polar	-	2019-10-31	Polar and non-polar	-
		dielectrics, internal fields in	8		dielectrics, internal fields in	
		a solid, Clausius - Mossotti			a solid, Clausius - Mossotti	
		equation			equation	
39	2019-11-09	(Derivation), mention of	-	2019-11-02	(Derivation), mention of	-
		solid			solid	
40	2019-11-11	liquid and gaseous	-	2019-11-11	liquid and gaseous	-
		dielectrics with one			dielectrics with one	
		example each, Numerical			example each, Numerical	9
		problems.		181	problems.	

|| Jai Sri Gurudev ||

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

CO-PO & CO-PSO mapping (18 Scheme)

Programme	Course	Subject	Credits	L-T-P-	Asse	essment	Exam
	Code			TL	SEE	CIA	Duration
B.E	18PHY12 /22	Engineering Physics	04	4-1-0-5	60	40	3Hrs

Co's

18C102.1	Memorize the setup of differential equations for the types of oscillations and analyze the solutions and also to recognize the importance of shock waves and their applications.
18C102.2	Describe the Elastic properties and Electrical properties of the materials and identify their applications in Engineering.
18C102.3	Study of Crystal structure and applications are to boost the technical skills and Its applications.
18C102.4	Explain the principle, conditions, requisites and generation of laser and its different applications mainly optical fiber communication through the study of construction, working and types of optical fibers.
18C102.5	Realize the various electrical and thermal properties of materials like conductors, semiconductors and dielectrics using different theoretical models.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
17C102.1	3	2												
17C102.2	2	2	1											
17C102.3	3	2					9							
17C102.4	3	2									8			
17C102.5	3	2		5 8										
AVG	2.8	2	1		8			-						

Note: 3 =Strong Contribution 2 =Average Contribution

1 = Weak Contribution

HOD

HOD

Dept. of Pre Engineering BGS Institute of Technology B G Nagara- 571448

Nagamangata Taiuk, Mandya Distric

|| Jai Sri Gurudev ||

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

CO-PO & CO-PSO mapping (18 Scheme)

Programme	Course	Subject	Credits	L-T-P-	Asse	essment	Exam
	Code	•		TL	SEE	CIA	Duration
B,E	18PHY16 /26	Engineering Physics Lab	02	0-0-3-3	60	40	3Hrs

Co's

18C102.1	Demonstrate the phenomenon of interference and diffraction using simple experiments.
18C102.2	Interpret the characteristics of bipolar junction transistors and photo-diode and also to Analyze the resonance concept and its applications in electrical circuits.
18C102.3	Determine the strength of the given elastic materials using bending and torsion methods and also the force constant of springs.
18C102.4	Calculate the electrical properties like Dielectric Constant of the Dielectric material, Fermi energy of a metal through simple experiments and Compare the theoretical and experimental values.
18C102.5	Visualize laser source and application of laser in the optical fiber and diffraction experiments to calculate the related quantities.
18C102.6	Practice the measurement of quantities, honest recording, representing and analyzing the data and expressing the final results.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
17C102.1	3	1							1					
17C102.2	3	1							1					
17C102.3	3	1							1					
17C102.4	3	1							1					
17C102.5	3	1					-		1					
17C102.6	. 3	2	1		1	1			1					
AVG	3	1.17	1		1	1			1			8		

Note: 3 =Strong Contribution 2 =Average Contribution

1 = Weak Contribution

HOD

HOD

Dept. of Pre Engineering **BGS** Institute of Technology

B G Nagara- 571448

|| Jai Sri Gurudev ||

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

LABORATORY RUBRICS

Programme	Course	Subject	Credits	L-T-	Assessment		Exam	
	Code			P-TL	SEE	CIA	Duration	
B.E	18PHY16/26	Engineering Physics Lab	02	0-0-3-	60	40	3Hrs	

Maximum Marks: 40

Continuous Internal Evaluation	Excellent (80%-100%)	Good (80%-60%)	Average (40%-50%)
a. Observation write up and punctuality (05)	Students should write the experiments in the Observation book neatly and attend the labs regularly	Students should write the experiments in the Observation book and attend the labs.	Improper maintenance of observation books and being irregular to the labs.
b. Conduction of experiment and output (10)	Students should conduct the experiments following the given procedure, plot the graph, perform calculation and show the accurate results with S.I unit.	Students should conduct the experiments following the given procedure, plot the graph and perform calculation with average results.	Improper conduction of experiments, graph plotting and results without S.I. unit.
c. Viva volce (05)	They should answer all the questions.	If they answer some of the questions.	If they doesn't answer the questions.
d. Record write up (10)	They should write records neatly, legibly and with suitable circuit diagrams.	They should write records with suitable circuit diagrams.	Improper/poor maintenance of record.
e. Internal Test (10)	Students should write the given experiments containing Formula, Tabular column, Nature of the graph, conduct the experiment and show the results with S.I. unit.	Students must write the given experiments, conduct the experiment and show the results.	If the student write the experiment but fails to conduct it.

HOD

Dept. of Pre Engineering
BGS Institute of Technology
B G Nagara- 571448
Nagamangala Taluk, Mandya District.

Supplementary Escam -> 2018 Batch.

18PHY12/22

First/Second Semester BE Degree Examination September 2019 (CBCS Scheme)

Time: 3 Hours

Max Marks: 100 marks

Sub: Engineering Physics

Q P Code: 60003/13

Instructions: 1. Answer five full questions.

- 2. Choose one full question from each module.
- 3. Your answer should be specific to the questions asked.
- 4. write the same question numbers as they appear in this question paper.
- 5. Write Legibly

Module – 1

- 1 a What are damped oscillations? Give the theory of damped oscillations and hence 10 marks discuss the case of under damping.
 - b State and explain the laws of conservation of mass, energy and momentum.

6 marks

c A free particle is executing simple harmonic motion in a straight line. The maximum velocity it attains during any oscillation is 62.8 m/s. Find the frequency of oscillation, if its amplitude is 0.5 m.

4 marks

Or

2 a Describe the construction and working of Reddy Shock tube. Mention any four properties of shock waves.

10 marks

b Write a short note on i) resonance ii) sharpness of resonance and iii) Helmholtz resonator.

6 marks

c Given the force constant as 9.8 N/m for a spring, estimate the number of oscillations it would complete in one minute if it is set for oscillations with a load of 89.37 gm. Assume there are no external forces acting on it.

4 marks

Module – 2

a Derive an expression for young's modulus Y of a material of a single cantilever.

8 marks

b State that explain Hooke's law. Define the different moduli of elasticity.

8 marks

c Calculate the force required to produce an extension of 1 mm in a wire of length 3m and diameter 1 mm. young's modulus of the wire = $7.5 \times 10^{10} \text{ N/m}^2$.

4 marks

Or

4 a Give the expressions for young's modulus (Y), bulk modulus (K) and rigidity modulus (η) in terms of α and β . Derive relation by Y, η and K.

6 marks

b Define neutral surface and neutral axis. Derive an expression for bending moment. $\left[B.M. = \left(\frac{Y}{R}\right)Ig\right]$.

10 marks

Calculate the angular twist of a wire of length 0.3 m and radius 0.2×10^{-3} m when a torque of 5 x 10^{-4} Nm is applied. Given $\eta = 8 \times 10^{10}$ N/m²

4 marks

Module - 3

		Module – 3		
5	a	Define co-ordination number. Calculate the atomic packing factor and co-ordination number for SC, BCC and FCC structures.	10 marks	
	b	Derive an expression for numerical aperture in terms of refractive index of core and cladding.	6 marks	
	c	Calculate the glancing angle for incidence of X-rays of wavelength 0.58 Å on the plane (132) of NaCl which results in 2 nd order diffraction maxima taking the lattice spacing as 3.81 Å.	4 marks	
		Or		
6	a b	Derive an expression for interplanar spacing of a crystal in terms of miller indices. Describe how Bragg's X-ray spectrometer is used to determine the wavelength of X-ray beam.	6 marks 6 marks	
	c	Describe the point to point communication system using optical fiber with the help		
		of a block diagram.	4 marks 4 marks	
	d	A fiber sample 500 m long has an input power of 8.6 µW and an output power of	4 IIIaiks	
		7.5 μ W. what is the loss specification for the cable sample? Module – 4		
7	0	State de-Broglie hypothesis and show that $\lambda = h/p$.	4 marks	
/	a b	Explain i) Stimulated emission ii) metastable state and iii) Spontaneous emission.	6 marks	
	c	Show that the electron cannot exist inside the nucleus using Heisenberg's uncertainty principle.	6 marks	
	d	Compute the ground state and first excited state energy values for an electron in a	4 marks	
	u	box of width 0.4 nm.		
		Or Or		
8	а	Find the Eigen energy values and Eigen functions for an electron in 1-dimensional		
Ü		potential well of infinite height.	8 marks	
	b	Describe construction and working of semiconductor laser. Mention any two		
		applications.	8 marks	
	c	A pulsed laser is emitting photons of wavelength 694.3 nm and the temperature of		
		operation is 18 %. Find the ration of population of the two energy states responsible	4 marks	
		for the release of photons. Module – 5	Thanks	
0		Obtain an expression for Fermi energy at ${}^{\circ}\!$	6 marks	
9	a b	Explain Fermi level in intrinsic semiconductor. Mention expressions for electron and	6 marks	
		hole concentration		
	c	Define i) Dielectrics ii) Polarization and iii) internal field.	4 marks	
	ď	If a Nacl crystal is subjected to an electric field of 1000 V/m and the resulting polarization is 4.3 x 10 ⁻⁸ C/m ² . Calculate the dielectric constant of NaCl.	4 marks	
0		Or		
10	a	Explain the variation of Fermi factor for cases E <e<sub>F & E>E_F at T=0 K.</e<sub>	4 marks	
	b	Derive Clausius-Mossotti equation.	6 marks	
	c	Derive an expression for conductivity of semiconductors.	6 marks	
	d	If the Fermi energy of silver is 5.5 eV, find Fermi velocity of conductions electrons?	4 marks	
		4 4 4 4 4		

DESCRIPTION OF THE PROPERTY OF

First/Second Semester BE Degree Examination July 2019 (CBCS Scheme)

Time: 3 Hours

Max Marks: 100 marks

18PHY12/22

Sub: Engineering Physics

O P Code: 60003/13

Instructions: 1. Answer five full questions.

- 2. Choose one full question from each module.
- 3. Your answer should be specific to the questions asked.
- 4. write the same question numbers as they appear in this question paper.
- 5. Write Legibly

Module – 1 6 marks a What are shock waves? Mention any four applications of shock waves. b Give a theory of forced vibrations and hence obtain the expression for amplitude. 10 marks c A mass 0.5 KG causes an extension 0.03m in a spring and the system is set for oscillations. Find (i) force constant k of the spring, (ii) angular frequency, 4 marks (iii) period T Or a Define simple harmonic motion. Derive the differential equation of motion for 2 8 marks SHM and give any two examples of S.H.M. 8 marks b Explain the construction an working function of Reddy shock tube. c In a Reddy tube experiment, it was found that, the time taken to travel between the two sensors is 195 μs and velocity of sound under the same condition is 340m/s. if the distance between the two sensors is 100mm, find the Mach number. 4 marks Module - 2 a State Hooke's law. Explain the nature of elasticity with the help of stress- strain 3 8 marks diagram. b Define bending moment. Obtain an expression for bending moment of a beam 8 marks $\left[B.M. = \left(\frac{Y}{R}\right)Ig\right]$ c Calculate the torque required to twist a wire of length 1.5m, radius 0.0425x10⁻²m, through an angle $(\pi/45)$ radian, if the value of rigidity modulus of its material is 4 marks $8.3 \times 10^{10} \text{N/m}^2$. Or a....What are torsional oscillations? Give the expressions for time period of torsional 6 marks oscillations. Mention the applications of torsional oscillation. b Define Poisson's ratio. Derive the relation between Y, η and σ where the symbols 10 marks have their usual meaning. Calculate the extension produced in wire of a length 2m and radius 0.013x10⁻²m due to force of 1.47N applied along its length. (Given Young's modulus 4 marks $Y=2.1\times10^{11}N/m^2$ Module - 3 a Define co-ordination number and packing factor. Calculate the atomic packing 5 10 marks factor for SC, BCC and FCC.

	b	Describe the different types of optical fiber with suitable diagram.	6 marks	
	С	Calculate the V- number and number of modes in an optical fiber of core diameter $40\mu m$. Refractive indices are 1.55 and 1.50 respectively at wavelength of 1400nm. Or	4 marks	
6	a	Derive an expression for inter planar spacing in terms of Miller indices for simple		
		cubic structure.	6 marks	
	b	What is attenuation? Discuss two factors contributing to the fiber loss.	6 marks	
	c	Discuss point to point optical fiber communication system with the help of diagram.	5 marks	
	d	Draw the following planes in a cubic unit cell. (i) (1 0 0) (ii) (1 1 0) (iii) (112)	3 marks	
	u	Module – 4	3 marks	
7	a	Mention any two properties of a wave function. Setup one dimensional time		
,	а	independent Schrodinger wave equation.	8 marks	
	b	Derive an expression for energy density under the condition of thermal equilibrium	o marks	
	Ü	in terms of Einstein's co-efficient.	8 marks	
	С	An electron is confined to move between two rigid walls separated by 20Å.		
		Calculate the Eigen energy values in eV for the first three allowed energy states.	4 marks	
		Or		
8	а	State Heisenberg's Uncertainty Principle. Show that electron emitted during		
		β -decay does not pre-exist inside the nucleus using uncertainty principle.	8 marks	
	b	Explain the terms (a) Spontaneous emission (b) stimulated emission		
		(c) Active medium (d) Resonance cavity	8 marks	
	C	A medium in thermal equilibrium at temperature 300K has two energy levels with		
		a wavelength separation of $1\mu m$. Find the ratio of population densities of the upper		
		and lower levels.	4 marks	
		Module – 5		
9	a	Define Fermi energy and Fermi factor. Discuss the variation of Fermi factor with		
		different temperature.	10 marks	
	b	Derive Clausius-Mossotti equation.	6 marks	
	C	For intrinsic gallium arsenide, the room temperature electrical conductivity is		
		$10^{-6}/\Omega$ m, the electron and hole motilities are respectively $0.85m^2V^{-1}S^{-1}$ and		
		$0.04m^2V^{-1}S^{-1}$. Compute the intrinsic carrier concentration at room temperature.	4 marks	
		Or		
10	a	Explain the failures of classical free electron theory.	6 marks	
	b	Derive the expression for electrical conductivity of a semiconductor.	6 marks	
	С	What are dielectrics? Give the relation between dielectric constant and		
	No.	polarization.	4 marks	
	d	Calculate the Fermi velocity and mean free path for the conduction electron in		
		silver, given that its Fermi energy is 5.5eV and the relaxation time for electron is		
		$3.83 \times 10^{-14} \text{sec.}$	4 marks	
		at all all all all all		

Page 2 of 2

CBCS Scheme (hall hand angiri Innerst,)

DEPARTMENT: PHYSICS

Scheme & Solution

Subject Title: Engineering Physics

Subject Code: 18PHY-12

Semester: Firs	Subject Title: Engineering 1 hysics
Questio	Marks Allocated
Numbe	
1.	a) Definition of shock waves & Equition of shock waves & Equition of Any four applications
	Witherary (a) Emplanaism) of fooded of the -1 02
	Regultant force = - v. dx - kx+ Feinpt > 01 Regultant force = ro. dze -> 01
	upto \$\frac{1}{32} + 2b \frac{dx}{x} + \walksymbol{w}^2 \times = \frac{F}{m} \sin(\ph) - > 02
	Removal edit caut of a casin (pt-a)
	From dx = a P cof (Pl-a)
	$a = \frac{F(m)}{\sqrt{4b^2p^2 + (w^2 - p^2)}}$
	c) (i) $k = \frac{F}{-x} = \frac{4.9}{0.03} = 163.3 \text{ N/sm} \rightarrow 01$
,	P = mq = -4.9N
	C) (i) $k = \frac{1}{2} = 1$
	$f = \frac{\omega}{2\pi} = \frac{100}{2\pi}$
9	2. a) Definition of S. H.M 702 Fig with Explanation Fig with Explanation 701
	Fig with Explanation
	$f = -Kx$ $d^{2}x + K \cdot x = 0 \text{and} d^{2}x + \omega^{2}x = 0 \text{ol} d^{2}x + \omega^{2}x = 0 $
	$\frac{d^2x}{dt^2} + \frac{k}{m} \cdot x = 0 \text{ of } \frac{d^2x}{dt^2} + \frac{w^2x = 0}{m} \xrightarrow{0} 02$ Two Expansiles of S. H.M. $\frac{1}{08}$
	Two Expansibles of sometouchin -> 04 Fig with explanation for constauction -> 04
	Explanation for home ()
	Page 1 of 4
	1100 ()

Question	Solution	Marks Allocated
Number C	$V_8 = \frac{d}{t} = \frac{100 \times 10^{-3}}{195 \times 10^{-6}} = 512 @ 513 \rightarrow$	02
	$M = \frac{12}{a} = \frac{5\frac{12}{600}}{340} = 1.505 (2) 1.517$	02 (6A)
	Modelle - 2	(04)
·3. a)	statement tooke's law ->	02
	Discussion of Discussion of (1) Propolitional limit of: ** S Elastic limit of: ** ** ** ** ** ** ** ** **	02
	(ii) Plastic behaviour-)	02
	(S. Hand & S. Soft) Strain (i) Ultimate strength 4 Fracture point	02 (08)
b)	Fig with expline of a bending beam -> Change in length = TO & Linear Strain= T	
	Change is length = TO & Linear strain= TR	02
	Y = Longitudinal stress = F/a F/R	01
	Moment of this force about neutral axis? $= F \times \overline{\sigma} = \frac{Ya\overline{\sigma}^2}{R} \Rightarrow \overline{\sigma}$	01
	For embre beam = \(\frac{1}{R} \cdot as^2 - \frac{7}{R} \)	01
	Benching moment for Rectangular body = 1 Tg = 1 x bd3 R 12	01
(c)	$\eta = 8.3 \times 10^{10} \text{ N/m}, R = 0.0425 \times 10^{2} \text{ m/4}$ Couple unit twist, $C = \frac{11.0 \text{ R}}{2 \text{ L}}$	01
	subtitute with answer?	01
	$C = 2.836 \times 10^{-3}$ J Torque, $\gamma = C \times 0$	01
	substitute with answer?	01
	Υ = 1.98 X 10 4 N.m	(DA)

Question Number Solution	Marks Allocated
4. a) Definition of torgional oxcillations ->	02
T= 2.TT x T where I moment of ine unit twist of wire	302
Any two applications	30
b) Definition of Poisson's ratio (= 13/4) Figure with explanation	06)
	02
Total elongation = DP. T. (x+B) ->	01
From $Px = DP.T. (x + B)$ to $T = \frac{1/x}{2(1+o)} (o = B/x)$	02
: Y= / => : Y= 27(1+0) >	01
C) L= 2m, R = 0.013 X 10 m, F= 14.7N	
$Y = 2.1 \times 10^{11} \text{ N/m}^2$	01
$Y = \frac{F a}{x/L} \Rightarrow x = \frac{FL}{aY} \left(\text{"a=1TR}^2 \right)$	01
substitution e calculation ?	02
$x = 3.6 \times 10^{-3} \text{m}$	64)
Module -3	
5. a) Definition of Goodination number of Packing factor	02
P.F=0.5317	02
$B.C.C. \rightarrow a = 4.R.$	02
	02
of oreprinder single mode optical fixed	08)
William Cole U.F. 101th Air	02
Mouded Index Multimode O.F. with fig > 9	2
06#Form#03-0	e 3 of 4

Page 3 of 4

	Secretary new or state of the secretary and the
Question Number Solution	Allocated
$V = \frac{\pi d}{\lambda} \times \sqrt{\eta_1^2 - \eta_2^2} =$	3.14 x 40 x 10 x (1.55) 2 (1.40)
V = 35	1400×10-7
Number of modes = M	$1_{11} = \frac{y^{2}}{1} = 612 \rightarrow 02$
	(OA)
J 1900 WIN EXPLOY	_ / [[] /
$d_{hkl} = x.copx = y.cos$	
2: y: 3 = a;	b: - 7 01
$\cos^2 x + \cos^2 \beta + \cos^2 \beta$	
For Gubic, a=b=c	7
For Gubic, a=b=c	9 01
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(00)
b) Attenuation defin	bos of Equent 702
$\alpha = -\frac{10}{L} \times \log_{10} \left(\frac{P_0}{P_1} \right)$	at de km
Explication lessentians les entre le	offer? 1 - 04
(ii) Scattering loss	sex y Any two (06)
Block diagram for Cox	menication and
Explanation using diag	man 02
(i) 13 (ii)	(05)
> y	->y > 02
1 × x	
EXX	
	- 201
-y	$\frac{1}{2}$
L'2	
06#Form#03-0	Post 4 C

Page 4 of 4

Question Number Solution	Marks Allocated
7. a) Any two properties of Wavefunction -> $ \psi = A \cdot e^{i} (kx - \omega t) \longrightarrow $	02
$\psi = A. e'(Kx-wt)$	01
$\frac{d^2\psi}{dt^2} = -\omega^2 \psi \qquad$	01
Travelling wave equit, du = 12. diq =	01
$\frac{d^2y}{dx^2} = -\frac{\partial^2}{v^2}, \psi \longrightarrow$	01
$K.E = -\frac{h^2}{8\pi^2 m} \cdot \frac{1}{\Psi} \cdot \frac{d\Psi}{dx^2} to $	02
$\frac{d^2\psi}{dx^2} + \frac{8\pi^2}{h^2} \cdot (E-V) \cdot \psi = 0$	(08)
b) Expression for (i) Rate of induced absorption (ii) Rate of spontaneous emission (iii) Rate of stimulated emission with intial	03
accumption e diagram	
Assuming Thermal equilibrium con. B12 N1 U2 = A21. N2 + B21. N2 U2 ->	01
upto $U_{\gamma} = \frac{A_{21}}{B_{21}} \cdot \left[\frac{1}{B_{12}} \cdot e^{h_{7} _{kT}} 1 \right] \rightarrow$	03
upto $U_{\lambda} = \frac{A}{B(e^{h\lambda} kT_1)}$	01
$\sum_{n=8}^{6} \frac{8ma^2}{8ma^2}$	01
For howned state, n=1, E0=1.51X1020	01
For 1st excited state, n=2, E=6.03×10-205	01
For 2" dexcited state, n=3, E=1.36x10-195 E==	(64)
8. a Heisenburg's Uncertainty Principle Statement.	₹ 02.
Einstein's Theory of Relativity $E^{2}=c^{2}(p^{2}+moe^{2})$	-> 02
△Px>> 1.1×10-20 N. Sec	→01

06#Form#03-0

Page 2-of-4

Question Solution Marks Number Solution
upto E> 20.6 Me V@ 9.7 MeV -> 02.
b Explanation of (i) Spontaneous Emission 708)
Till Stimulated emission.
iii) Active medium iv) Resonance cavity - 100 +00
Formula No = No e Holks
substitution 01
calculation, then answers
$\frac{N_2}{N_1} = 1.365 \times 10^{-21} \frac{9}{600}$
Module - 5
9. a) Defination of Fermi energy and 2 02+02
fermifactor with equation $\int_{0}^{\infty} = 0.4$
$E_{F} = \frac{h^{2}}{8m} \times \left(\frac{3n}{n}\right)^{3/3} e^{\frac{1}{2}} f(E) = \frac{1}{e^{hY kT} + 1}$
(i) $E \times E_F$ at $T = 0K$, $f(E) = 1$ \longrightarrow 01 (ii) $E \times E_F$ at $T = 0K$, $f(E) = 0$ \longrightarrow 01
(ii) $E = E_F$ at $T > 0$ K $f(E) = 0.5$ \longrightarrow 01
hraphical fig with > 01+02
5 consideration f. $M = \kappa_e E_i$ 02
1 lenta to P
upto $E = \frac{P}{\varepsilon_o(\varepsilon_{s}-1)}$ 01
upto $\frac{1}{N \propto_e} = \frac{1}{\varepsilon_o} \cdot \left[\frac{1}{(\varepsilon_{\gamma} - 1)} + 7 \right] \rightarrow 01$
$\frac{\mathcal{E}_{x}-1}{\mathcal{E}_{x}+2} = \frac{N\chi_{e}}{3\mathcal{E}_{o}} \longrightarrow 01$
c) or; = 10 ⁻⁶ /-2·m, Me = 0.85 m²/v. seg
$\mu_{b} = 0.04 \text{m}^{2} / \text{V. sec}$
$e^{-1} = n$; e (Me + Mh) substitution e Calculation $n = 7.0 \times 10^{12} / m^3 = \frac{5.02}{64}$
() () () () () () () () () ()

06#Form#03-0

Page 3 of 4

Question Number	Solution	Marks Allocated
	(i) specific Heat: - According to theory, $Cv = \frac{3}{2} \cdot R$ But experimental observation $Cv = 10^4 RT$	02
	(ii) Conductivity dependence on Temperature; ACC. to theory, o x But experimental observation, o x	02
h)	(iii) conductivity dependance on electron. Acc to theory, o x n ? concentration: Experimentally, o x n } Consideration & I = Ne. e. A v	02 (06) > 02
2	J= I/A => Ne. EV	01
	J = o.E upto o = Ne.epe, o = Nh.eph ->	01
	o = e (Ne: He + Nh: Mh) -	01 (66)
6)	$E_{F} = 5.5 \text{ eV} = 5.5 \times 1.602 \times 10^{-19} \text{ J}$ $Y = 3.97 \times 10^{-14} \text{ sec}$ $E_{F} = \frac{1}{2} \text{ mV}_{F}^{2} = \text{ V}_{F} = \sqrt{\frac{2E_{F}}{m}}$ $V_{F} = 1.39 \times 10^{6} \text{ m/sec}$	01+01
	$\lambda = \sqrt{5.518 \times 10^{-8}}$	01
	~_1 ^	
	Department of Engg. Physics C.S. Institute of Technology Naga 571 145 Leave To Mandy. the	
06#Form#02.0		Page 4-167

First Semester BE Degree Examination (CBSC Scheme)

Time: 3 Hours Max Marks: 100 marks

SUB: ENGINEERING PHYSICS

Q P Code: 60003

Instructions: 1. Answer **five full** questions.

- 2. Choose one full question from each module
- 3. Your answer should be specific to the questions asked.
- 4. write the same question numbers as they appear in this question paper.
- 5. Write Legibly

MODULE - 1

		MODULE – I		
1.	a.	Define damped oscillations and forced oscillations with examples.	4 marks	
	b.	Describe the construction and working of Reddy Shock tube.	6 marks	
	С.	Define simple harmonic motion. Derive the equation for simple harmonic motion using Hooke's law.	6 marks	
	d.	Evaluate the resonance frequency of a spring of force constant 2467 N/m, carrying a mass of 100 gm.	4 marks	
		OR		
2.	a.	Define Mach number. Write the applications of shock waves.	6 marks	
	b.	Discuss the theory of forced vibrations and hence obtain the expression for amplitude.	10 marks	
	С.	Find the frequency of oscillation of a free particle executing simple harmonic	4 marks	
		motion of amplitude 0.35 m if the maximum velocity it can attain is 220 m/s.		
MODULE – 2				
3.	a.	Define young's modulus, bulk modulus and rigidity modulus and derive a relation	8 marks	
		between them.		
	b.	Define bending moment of a beam. Derive an expression for bending moment	8 marks	
		$\left(B.M = \left(\frac{Y}{R}\right)Ig\right)$		
	C.	A wire length 1 m and diameter 1 mm is clamped at one of its ends. Calculate the couple required to twist the other end by 90°. Given rigidity modulus = $2.8 \times 10^{10} \text{ N/m}^2$.	4 marks	
		OR		
4.	a.	State Hooke's law of elasticity. Derive an expression for young's modulus Y of a	10 marks	
		material of a single cantilever.	6 marks	
	b.	What are torsional oscillations? Mention the expression for couple per unit twist of	O IIIai KS	
	C.	a solid cylinder and expression for period of oscillation. A solid lead sphere of radius 10.3 m is subjected to a normal pressure of 10 N/m ²	4 marks	
		acting all over the surface. Determine the change in its volume.		

MODULE - 3

		MODULE – 3	
5	b. a	Explain seven crystal systems with heat diagram.	10 marks 6 marks
	C	A monochromatic X-ray beam of wavelength 0.7 Å undergoes first order Bragg	4 marks
		reflection from the plane (302) of cubic crystal at a glancing angle of 35. Calculate the lattice constant	
		OR	
6.	. a.	retried aperture in terms of refractive index of core and	6 marks
		cladding.	o marks
	b.	00	4 marks
	С.	Derive an expression for interplanar spacing of a crystal in terms of miller indices.	6 marks
	d.	Calculate the V-number and number of modes supported by an optical fiber of core	4 marks
		index 1.54 and cladding index 1.5 at operating wavelength 1.3 um. The diameter of	· marks
		the fiber is 50 μm.	
7.	•	MODULE – 4	
7.	a.	Set up 1-dimensional time independent Schrodinger's wave equation and mention any two properties of wave function.	8 marks
	b.	Derive an expression for energy density at thermal equilibrium through Einstein's coefficients.	8 marks
	C.	An electron has a speed of 500 m/s correct up to 0.01 %. With what fundamental	4 marks
		accuracy the position of the electron can be located?	4 IIIai KS
		OR	
8.	a.	Show that the electron cannot exist inside the nucleus using Heisenberg's	6 marks
		uncertainity principle.	o manto
	b.	What is a laser? Describe the construction and working of CO ₂ laser with the help of energy level diagram.	10 marks
	c.	A pulsed laser emits of pulses of 20 ns duration with an average power / pulse	
		being 0.1 Mw. If the number of photons emitted per pulse is 6.981 x 10 ¹⁵ , calculate	4 marks
		the wavelength of the laser.	
		MODULE – 5	6
9.	a.	Define Fermi level and Fermi factor. Write the assumptions of quantum free	<u> </u>
		election theory.	6 marks
	b.	Derive an expression for conductivity of semiconductors.	C
	c.	What are polar and non polar dielectrics?	6 marks
will be	d.	The Fermi level in silver is 5.5 eV at 0°K. Calculate the number of	4 marks
) iy	free electrons / unit volume.	4 marks
10		OR	
10.	a.	Obtain an expression for Fermi energy at 0° K.	6 maule
	b.	Cladsids-Wossolli Equation.	6 marks
	C.	and Edoculis (Helefillice With over 1	6 marks
	u.	The following data are given for intringia games:	4 marks
		$\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	4 marks
		sample if the intrinsic carrier concentration is $7 \times 10^{12} \mathrm{m}^{-3}$.	

Scheme of Evaluation Module -1

- a) Definition of damped oscillation with example Definition of forced oscillation with example.
- Leddy Shock tube construction

work, ug

- Simple halmonic motion definition $F = -kx \qquad F = m \frac{d^2x}{dt^2}$ $\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$
- d) Fâce constant k = 2467 NIm

mall $m = 100gm = 100 \times 10^{-3} \text{ kg}$

$$\omega = \frac{k}{m} \qquad \omega = 2\pi \delta$$

$$\delta = \frac{1}{2\pi} \frac{2447}{m} = 2\pi \frac{2447}{100 \times 10^3} = 25 \text{ Hz}$$

2. (a) Definition of mach number.

Any four & five applications

Theory of forced Viblations

Resultant force = $-8 \frac{dx}{dt} - kx + F sinPt$ Resultant force = $m \frac{d^2x}{dt^2}$ $\frac{d^2x}{dt^2} + \frac{h}{m} \frac{dx}{dt} + \frac{k}{m} x = \frac{F}{m} sin(Pt)$

	٤
$\frac{1+\lambda}{1+\lambda} + \lambda + \frac{1}{\lambda} + \frac{1+\lambda}{1+\lambda} = \frac{F}{m} \text{ Sin(Ft)} - 0$	Č] N.
$x = a \sin(t - x)$	0114
$\frac{dl}{dt} = ar col(Ri - x)$	
$\frac{d^2\lambda}{dt^2} = -\alpha t^2 \operatorname{sin}(t - \alpha^2)$	
Substituting about some in egod & simplifying	
ie act	04 M
a = Flor	O
HP-L-+ (103-65)	
mez = 120m/s V = w(Ta2-x2	OIM
$3=7$ $x=0. \forall mex=wa$	OIM
$w = \frac{V_{\text{max}}}{a} = \frac{220}{0.35} = 628.5 \text{ adj}$	OIM
$j = \frac{\omega}{2\bar{\lambda}} = \frac{628.5}{2\bar{\lambda}} = 100 \text{ Hz}$	011
module -2	
3 21 Detinition of young's modulus, bulk modulus 4 2. gidity modulus	05M
$4 = 2n(1+\sigma) + k = \frac{4}{3(1-2\sigma)}$	03 M
$V = \frac{9nk}{(3k+nk)}$	

	3	0
	b) Definition of bending moment	OIM
	Diagham	Olm
	Linear Strain = & Linear Strell = Fa	D3M
	$F = \frac{Yal}{R}$, moment $g face = \frac{Y}{R} \sum a l^2$	
	Ig = \(\(\alpha \) \(\alpha	03M
	Fà hectangular chois section, bending moment = $\frac{4}{R} \left(\frac{bd^3}{12} \right)$	2
	() $L: 1m$ $R = 0.5 \times 10^{3} m$ $7 = \pi \pi R^{4} \Theta$	OIM
	$\theta : 90 \overline{\Lambda}/2$ $\eta : 2.8 \times 10^{10} \text{N/m}^2$ $= \pi \times 2.8 \times 10^{10} \times (0.5 \times 10^3) \times \overline{\Lambda}$	0211
	$2 \times 1 \times 2$ $7 = 4.3 \times 10^{-3} \text{ Nm}$	OIM
		OIM
Ц.		
	diagram, bending noment Y Ig = W(L-X)	02M
	L= d2y Substituting this in the above	04M
	egn integrating & simplifying, arrive at	Olm
	$Y = \frac{WL^3}{3Y_0 I g}$ For Rectangular Chold Section $Ig = \frac{bd^3}{12}$ $Y = \frac{4WL^3}{y_0 bd^3}$	02M
-		

o mandata de proposiciones de la constantida del constantida de la constantida de la constantida del constantida de la constantida del		6
The second secon	b) to biorial decillations.	ozm
A REAL PROPERTY OF THE PERSON	Extralsion fl. couple Pul. unit built C= X MR4	02n
ener vor vyrasten i dege andreamen ener	with explaining noto from	02_1
	T = 2x = with wotation	
	$V = 10.3 \text{m}$ $V = \frac{14}{3} \times 10^3$	014
	$P = 10N I_{m}^{2}$ $K = 4.58 \times 10^{10} N I_{m}^{2}$ $K = \frac{PV}{11}$	OIM
	$v = \frac{P}{5} \frac{4}{3} \pi x^{3} = 10^{-6} \text{m}^{3}$	024
- 5000000000000000000000000000000000000	module -3	0 24
5	a) Définition lattice & bobis	
	seven crystabysteans explanation with diagrans	08M
	b) Typels of officel fibers, 3 types each callied 2 malks. Diagram with explanation	061
	$() > = 0.7 \dot{A} \qquad 2d \sin \theta = n >$	0
	n=1 $(h \times L) = (302)$ $d = \frac{n}{2} = 1 \times 0.7 \dot{A} = 0.61 \dot{A}$ $(2.5, no) = 2.5 \cdot 1.05 \dot{A} = 0.61 \dot{A}$	02M
	$0 = 35^{\circ}$ $a = 7$ $d = \frac{a}{h^{2} + k^{2} + k^{2}}$ $a = 2.2 \text{ Å}$	02M
6	a) Diagiam no Sinos = n. Sino,	03m
	$n_0 \sin(n_0 - 0) = n_2 \sin n_0 \cos n_1 = n_2/n_1$ $\sin n_0 \cos n_1 = n_2 \sin n_0 \cos n_1 = n_2/n_1$ $\sin n_0 \cos n_1 = n_2 \sin n_0 \cos n_1 = n_2/n_1$	03m

Scanned by CamScanner

V	*	(5)	(B
		b) Diagram, 2d sino = n) with complete explanation	04 M
		Diagham with complete delivation Co3x + co32B + cos2r=1	OLM OIM
ADVICE TO THE PERSON OF THE PE		$\frac{d_{hkl}}{a^{2}} = \frac{1}{\frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}} + \frac{l^{2}}{c^{2}}}$	0 2 M
-		For cubic lattice $a = b = c = a$ $d_{hkl} = \frac{a}{h^2 + k^2 + l^2}$	OIM
		Voumbel = $\frac{7}{N}$ Voumbel = $\frac{\pi d}{N} \frac{\ln (1-n_2)^2}{N}$	<i>б</i> 2-М
		$n_1 = 1.54$ $n_2 = 1.5$ $\lambda = 1.3 \text{Hm}$ $N = \frac{V^2}{2} = 887.6$ $d = 50 \text{Hm}$	0211
	٦.	Module -4 Any two Plopelties a) $\psi = Ae^{i(\kappa x - \omega t)}$ to $\frac{1}{\lambda^{2}} = -\frac{1}{4x^{2}} + \frac{d^{2}\psi}{dx^{2}}$	02M / 03M
		Total Enelogy E = KE+PE to 124 + 822m(E-V)	3 M
		emillion & Stional aled emillion with equation	03н
		$B_{12}N_1U_7 = A_{21}N_2 + B_{21}N_2U_7$	OIM
		$U_{\gamma} = \frac{A_{21}}{B_{21}} \begin{bmatrix} \frac{1}{B_{12}} & \frac{N_1}{N_2} - 1 \\ \frac{B_{12}}{B_{21}} & \frac{N_1}{N_2} - 1 \end{bmatrix} = e^{\frac{N_1}{KT}}$	OLM
		C Albu Com	Scanner

Scanned by CamScanner

	6
$U_{\gamma} = \frac{8 \pi h \gamma^{3}}{C^{3}} \left[\frac{1}{C^{KT} - 1} \right]$	Olm
$U_{\gamma} = \frac{A}{13\left(\frac{b^{\gamma}}{e^{-1}}\right)}$	0,1
$\Delta V = 500 \times 0.01 = 0.05 \text{ m/s} \times . \Delta P = \frac{h}{4\pi}$ $\Delta x = 7$ $M = 9.1 \times 10^{-31} \text{ kg}$ $\Delta x = 1.15 \times 10^{-3} \text{ m}$	02m 01m
a) $E = P^{2}C^{2} + m_{o}C^{4}$ $\Delta x. \Delta P > \frac{h}{4\pi}$ $d = 10^{-14}m$ $\Delta x = 10^{-14}m$. $E = 10 \text{ MeV} \Delta 20 \text{ MeV}$	06 M
b) Loser definition construction 2 co, lasel working 2 co, lasel	01M 04M 05M
$\begin{array}{ll} \text{(c)} \\ \text{(b)} \\ \text{(c)} \\ (c$	02M
> = 6937A	

•		3
	Malule -5	
i].	a) Define ream: level & Felion: factor	0211
	11 11 !! want troud of anouturn free electron theory	04M
	I = Nee AVe In = NgeAVh	
	I = Ie + Ih = eA[Neve + Nhvh]	0 2M
	$T = T \mid_A \qquad M = \frac{Vd}{E}$	
Û	J= o= e (Ne Me +NnMh)	02M
	Få intriusic Sc, Ne = Nh = n;	
1	May method, students can use	02_M
	() Polar & won polar dielectrics definition	ОНМ
0	(1) $E_{F} = 5.5 \text{ eV}$ $N = 7$ $E_{F} = B n^{2/3}$ $N = 7$ $E_{F} = B n^{2/3}$ $E_{F} = B n^{2/3}$ $E_{F} = B n^{2/3}$ $E_{F} = B n^{2/3}$	OIM
	$B = 5.85 \times 10^{-38}$ $= \left(\frac{5.5 \times 1.602 \times 10^{-19}}{5.85 \times 10^{-38}}\right)^{3/2}$	OZM
	$n = 5.845 \times 10^{28} _{\text{m}^3}$	OIM
10.	a) Explution for fermi every at o'k	and the same of th
	$\int_{C} a = \int_{C} E dE \times f(E) - 0$	OIM
Commence of the Commence of th	f(E)=1 g(E)dE = 8[2 x m ³ / ₂ E 1/ ₂ dE using both er's h ³ into integrating & simplifying we get	0 LM
	into integrating & Simplifying we get	

Scanned by CamScanner

	(8)	190000 to 190000
$E_{\Gamma_0} = \frac{1/2}{80}$	$\left(\frac{\lambda}{2n}\right)^{2/3}$	Q3M
F-60 = 1	n ² /3	
The state of the s	mollotti leccation	02M
) =	Node E; P = Go (Ex-1) E E + TP Substituting E, & E &	221
	Sind litying	
Nac	$=\frac{1}{60}\left(\frac{1}{(6a^{-1})}+V\right)$	the OZM
Y= 13, 1	Locality field & simplifying to	02
1	an, we or	
	$\frac{(2x-1)}{(Ex+2)} = \frac{N de}{360}$	
c) solid,	l'auid & gaseous d'electrud u	o6r
examp.	et. 2 molts each	
d) y - n 2	$cm^{\nu}v^{-1}c^{-1}$	
d) $M_e = 0.8$ $M_h = 0.0$	5 m v s 6 = n; e (Me+Hh) 4 m ² v s d	OIM
$h_h = 0$	n; e (Het	t14h) OL
β= ? n; = 7?	$\times 10^{-1} \text{ m}^3 = \frac{1}{1 \times 10^{-12} \left[0.85 + 0.04\right]^{-1}}$	010
	P = 1×106 -200	
) = 1/10	

BGSIT	Doc. Title: Internal	Test Question Paper	Doc. No.: 06#Form#02b	
BG Nagara	Page 1 of 1	Date: 03.10.2019	Rev. No. 00	

INTERNAL TEST QUESTION PAPER FORMAT- CBCS SCHEME (VTU)

& RANJITHA K N Name of the Faculty/s: SHANKARA S R

Date: 03.10.2019

Signature:

Reviewer's Signature:

BGS Institute of Technology

Department: Engineering Physics

Test: I

USN:

Semester: I

Section: A. B & C

Subject Name & Code: Engg.Physics & 18PHY12

Instructions

Duration: 60 minutes

Max. Marks: 30

i) Select one question from each part.

ii) All main questions carry equal marks.

II) All main questions carry equal maixs.					
Question Number	Questions	Marks	CO	Levels	
	PART – A				
	a) What are damped oscillations? Give the theory of damped oscillations.	10	CO1	L2	
1	b) Calculate the resonance frequency for a simple pendulum of length 1m.	5	CO1	L3	
	OR				
	a) Define Mach number. Explain the construction and working function of Reddy shock tube.	10	CO1	L2	
2	b) A body of mass 500gm is attached to a spring and the system is driven by an external periodic force of amplitude 15N and frequency 0.796Hz. The spring extends by a length of 88mm under the given load. Calculate the amplitude of oscillation, if the resistance coefficient of the medium is 5.05 kg/s. Ignore the mass of the spring.	5	CO1	L3	
	PART – B				
3	a) Give the theory of forced vibrations and hence obtain the expression for amplitude.	10	CO1	L2	
	b) What are shock waves? Mention any four applications of Shock waves.	5	CO1	L2	
	OR				
,	a) Explain the construction and working function of CO ₂ laser with the help of energy level diagram.	10	CO4	L2	
4	b) In a Reddy tube experiment, it was found that, the time taken to travel between the two sensors is 200µs and velocity of sound under the same condition is 340m/s. If the distance between the two sensors is 100mm, find the Mach number.	5	CO1	L2	

BGSIT	Doc. Title: Inter	nal Test Scheme	Doc. No.: 06#Form#03
BG Nagara	Page 1 of 4	Date: 04.09.2019	Rev. No. 00

CD CC C I	/ =-	,	-	_
CBCS Scheme	-	1	 ()

DEPARTMENT: PHYSICS

Scheme & Solution
Subject Title: Engineering Physics

Subject Code: 18PHY-12

Semester: First

Question Number	Solution Subject Cot	Marks Allocated
W1 a)	Part - A Definition for Damped oscillations: Restoring force & Displacement	→ 02
	Fr \times 20 =) $F_r = -kx$ $\rightarrow 0$ Frictional force, \times velocity $F_r \times d^2 =) F_r = -x$ $dx \rightarrow 0$	02
	Resulting force = Fx + Fq m. dix = -kx - 8. dx dt2) 02
	dr + 2b. dx + w2x = 0 ->	01
	equit > x = A. e>	01
	$8c = \frac{20}{2} \left\{ \left[1 + \frac{b}{\sqrt{b^2 - \omega^2}} \right] \cdot \left\{ -\frac{b}{\sqrt{b^2 - \omega^2}} \right\} + \frac{1}{\sqrt{b^2 - \omega^2}} \right\}$	02
L)		(10)
9/	$T = 2\pi \times \sqrt{7} \Rightarrow f = \frac{1}{2\pi} \times \sqrt{\frac{1}{9}} \Rightarrow$	02
Z. a)	Definition for Mach number ->	02
	l=1m, f=? Th=2TTX F=> f=\(\frac{1}{2\text{T}}\) Definition for Mach number -> Construction with fig -> Explanation for working function ->	04

Page 1

Question Number	Solution	Marks Allocated
Number b)	$m = 500 \times 10^{3} \text{kg}$, $f = 0.796 \text{Hz}$	
	F=15 N, 7,=5.05 kg/e x=88 x103m	
* :	$a = ?$ $P = 2\pi r^2 = 5 \text{ rad/sec} \rightarrow$	61
	$K = \frac{F}{2C} = 55.68 \text{ N/m} \rightarrow$	01
6	w = √ = 10.55 radge=>	01
	b= x = 0.05 rad/se-	01
	$a = \frac{F/m}{\sqrt{4b^2p^2+(w^2-p^2)^2}} = \frac{v}{2m} = 0.05 \text{ rad/se}$ $a = \frac{V}{\sqrt{4b^2p^2+(w^2-p^2)^2}} \Rightarrow a = 0.3m \Rightarrow$ $a = 0.3m \Rightarrow$	01
3 a	Definition for forced oxcillation -	02
	Restoring force & Displacement	,
\ r \	Fx XUX => Fx = -KX	
	Frictional force x Velocity or	03
2,2	Frictional force x velocity For X dx => Fr = - 8 dx	
	Exeternal periodic force = F. Rin (At)	
	ma=-kx-vide+Fisin(pt)->	01
	Final expression for amplitude	
	Hom	04
	a = V462 p2+ 102 (w2 b2)2	(10)
b	Definition for shock waves -> i) Medical field for eye defect) -	02
	in For Wood perpreservation (->	04
	in the Parcil industry	66
	iv) For Defence field	8
		, ted
,		
		7
	Page 3	

Question Number	Solution	Marks Allocated	
	Explanation for construction?	04	
	Explanation for construction? -> with fig with fig with energy- level diagram	06	
6	$d = 100 \times 10^{-3} \text{m}$ $t = 200 \times 10^{-6} \text{gec}$ a = 340 m/gec		
	$a = 340 \text{ m/sec}$ $v = \frac{100 \times 10^{-3}}{200 \times 10^{-6}} = 0.5 \times 10^{-3} = 500 \text{ m/sec}$	02	
	$V = \frac{10000000}{20000000000000000000000000000$	05	
		boll of kare	
	B G Na segamangala Karnat	Tq, Mand	
		9	
		-	

BGSIT	Doc. Title: Internal	Test Question Paper	Doc. No.: 06#Form#02b	
BG Nagara	Page 1 of 1	Date: 04.11.2019	Rev. No. 00	

INTERNAL TEST QUESTION PAPER FORMAT- CBCS SCHEME

Name of the Faculty/s: SHANKARA S R & RANJITHA K N

Semester: I

Date: 04.11.2019

Signature:

Reviewer's Signature:

musur 34

USN:

BGS Institute of Technology

Department: Engineering Physics

Test: II

rest. 1

Section: A,B&C

Subject Name & Code: Engg.Physics & 18PHY-12

Instructions

Duration: 60 minutes

Max. Marks: 30

i) Select one question from each part.

ii) All main questions carry equal marks.

11) All main questions carry equal marks.				
Question Number	Questions	Marks	CO	Levels
	PART – A			
	a) Explain the different types of optical fibers.	06	CO3	L2
	b) Derive the expression for numerical aperture in terms of R.I core and clad.	05	CO3	L1
. 1	c) Calculate the V-number and Number of modes in an optical fiber of core			
	diameter 50 µm, core and cladding refractive indices 1.41 and 1.40, at	04	CO3	L3
	wavelength 820nm			
	OR			
	a) Explain the construction and working function of semiconductor laser	06	CO4	L2
	b) Explain the applications of laser in industrial field.	05	CO4	L1
2	c) Find the ratio of population of the two energy states of the ruby laser the			
	transition between which is responsible for the emission of photons of	04	CO4	L3
	wavelength 632.8 nm. Assume the temperature as 330K			
	PART – B			
	a) Find the energy Eigen values and Eigen functions for a particle in one-	10	CO4	L2
3	dimensional potential well of infinite height and discuss the solutions.	10	CO4	1.2
3	b) Compute the first 3 permitted energy values for an electron in a box of width	05	CO4	L3
	4Å.	03	001	LIS
	OR			
700	a) State Heisenberg's Uncertainty Principle. Show that electron cannot exist	10	CO4	L2
*	inside the nucleus of an atom using Heisenberg's Uncertainty Principle.	10	004	122
4	b) An electron has a Speed of 100 m/s. The inherent uncertainty in its			
	measurement is 0.005%. Calculate the corresponding uncertainty that arises in	05	CO4	L3
	determining its position.	,		

Department of Engg Physics

G.S. Institute of Techno and

B.G. Nagat 531 44

reamangala Tq. Manuar Taxon

DEPARTMENT: PHYSICS

Scheme & Solution

Semester: First Second

Subject Title: Engineering Physics

Subject Code: 18PHY-12

Question Number	Solution	Marks Allocated
	Paret - A	
1 a)	i) Single mode optical fiber ->	02
	ii) Step-Index Multimode O.F ->	02
	iii) Graded-Index Multimode O.F.	02
	(III) VI dayod 2. oc	(06)
	Fig with Explanation ->	02
	Fig with Englanation -> no. sin(00) = n. sin(01) ->	01
	n, & in (90 - 01) = n2. & in (90) ->	0)
10		
	$8in(\theta_0) = \frac{10^2 - 10^2}{100}$	-
	For Air medium, no=1	<i>></i> 01
	$N.A = \sqrt{n_1^2 - n_2^2}$	(06)
S	$V = \frac{\pi d}{\sqrt{n_1^2 - n_2^2}} \longrightarrow$	01
	$V = \frac{3.14 \times 50 \times 10^{-6} \times \sqrt{(1.41)^2 - (1.40)^2}}{820 \times 10^{-9} \times \sqrt{(1.41)^2 - (1.40)^2}}$	D 1
	$V = \frac{3.14 \times 50 \times 10}{820 \times 10^{-9}} \times V(1.41) - (1.40) \rightarrow$	01
	V = 32	01
	$\frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}$	
	No of modes (Mn) = V	01
12.6	+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(04)

Page 1

Question Number	Solution	Marks Allocated
& &)	Fig with Explanation of Constructional point	03
	Explanation of Working - function of Semiconductor layer	03
6	i) Lager Welding	02
	ii) Lager Gutting	02
	iii) Lager Doilling	01
	L2	(05)
5)		0)
	$\frac{N_2}{N_1} = \frac{6.625 \times 10^{-34} \times 10^{8}}{1.38 \times 10^{-23} \times 632.8 \times 10^{9} \times 330}$	01
	_ calculation _>	01
	Arguer No = 1.059×10-30	01 (0A)
10 1-20	Parot - B	
3. a)	Fig With Potential function.	9 02
	$\frac{d^2\psi}{dn^2} + \frac{8\pi^2\sigma}{b^2} \cdot (E-V), \psi = 0 \rightarrow$	01
MIL	A. Sinbx+B. Gosbx - 9	01

Page 2

Question Number	Solution	Marks Allocated
	upto $E_n = \frac{n^2h^2}{8ma^2}$	02
	upto 4n=A. Rinskac ->	02
	folution q Discussion ->	02
. ~		10
6)	Formula, $E_n = \frac{n^2 b^2}{8rma^2}$ \rightarrow	01
	For Zero Point E.S. E= 2,35	0) eV 01
	For I'd Excited E.S. E, = 9.4eV	01
10. (For II'd Excited E.S. Ez=21.5eN	(05)
4· a)	For Satatement of Heisen	02_
	berg's Uncertainty Principle Explanation —	02
	£=800C2	01
gud to many	P= 800 2	01
Misk O M of clayer kn of clayer	D≈ 5 10 m	0)
	$\triangle P_{\alpha}, \Delta x > \frac{h}{4\pi} \longrightarrow$	01

Page 3

Question Number	Solution	Marks Allocated
	P> 0.5 × 10 ⁻²⁰ N. je?	01
	E7, 20 MeV Final conclusion ->	01
Ь	$\Delta P. \Delta 26 > \frac{h}{4\pi} \rightarrow$	01
	DV= 100 × 1/1 of DV DV= 0.005 m/gec	01
	$\Delta b = 9.1 \times 10^{3} \times 0.005$.0)
	$\Delta p = 9.1810 \times 0.005$ $\Delta x > 0.0115m$	01
	Jepa, tmer	tore of Technology
	B G S	agar 571 ia: la Tg, Mandy groba (FMF)

Page 4

BGSIT	Doc. Title: Internal	Test Question Paper	Doc. No.: 06#Form#02b
BG Nagara	Page 1 of 1	Date: 06.12.2019	Rev. No. 00

INTERNAL TEST QUESTION PAPER FORMAT- CBCS SCHEME (VTU)

Name of the Faculty/s: SHANKARA S R

Date: 06.12.2019

Signature:

Flacton

Reviewer's Signature:

mueous gr

BGS Institute of Technology Department: Engineering Physics

Test: III

USN:

Semester: I

Section: A, B & C

Subject Name & Code: Engg.Physics & 18PHY12

Instructions

Duration: 60 minutes

Max. Marks: 30

i) Select one question from each part.

ii) All main questions carry equal marks.

Question Number	Questions	Marks	CO	Levels	
PART – A					
	a) Derive the expression for Clausius-Mossotti equation.	6	CO5	L2	
	b) Obtain the expression for Fermi energy at 0 K.	5	CO5	L2	
1	c) The charge carrier density of intrinsic germanium is $2.372 \times 10^{-19} / \text{m}^3$. Assuming electron and hole mobility's as $3.38 \text{m}^2 \text{V}^{-1} \text{s}^{-1}$ and $0.18 \text{ m}^2 \text{V}^{-1} \text{s}^{-1}$ Calculate the resistivity of intrinsic germanium at 27°C .	4	CO5	L3	
	OR				
	a) Discuss the probability of occupation of various energy states by electrons at T=0K, and T>0K on the basis of Fermi factor.	6	CO5	L2	
2	b) Derive the expression for electrical conductivity of a semiconductor.	5	CO5	L2	
U .	c) Calculate the Fermi energy and Fermi velocity of a metal at 0 K whose density is 10500kg/m3, atomic weight is 107.9 and as one free electron per atom.	4	CO5	L3	
	PART – B		,		
2	a) Define the Unit cell and Primitive cell. Explain in brief the Seven Crystal System, with geometrical figure.	10	CO3	L2	
3	b) Draw the following planes in a cubic unit cell. (i) (1 0 0) (ii) (1 1 0) (iii) (1 1 2)	5	CO3	L3	
33	OR				
V	a)Derive an expression for inter planar spacing in terms of Miller indices for SCC and Calculate atomic packing factor for SCC & BCC.	10	CO3	L2	
4	b) Inter planar distance for a crystal is 3Å and the glancing angle for second order spectrum was observed to be equal to 10 ⁰ 30°. Find the wavelength of the X-rarys used.	5	CO3	L3	

DEPARTMENT: PHYSICS

Scheme & Solution

Semester: First Subject Title: Engineering Physics Subject Code: 18PHY-12

Semester: First	Test - III Date: 06/12/2	019
Question Number	Solution	Marks Allocated
	Part - A	
2 3	Consideration & ll= Le. Ei -	>01
	$E_1 = \frac{P}{N. de}$	01
	$E = \frac{P}{\varepsilon_{\bullet}(\varepsilon_{r} - D)} \rightarrow$	01
	cepto 1 = 1 (Cer-D+7).	9 O Z
	$\frac{\varepsilon_{\tau-1}}{\varepsilon_{\tau+2}} = \frac{N \cdot \kappa_e}{3\varepsilon_o} \longrightarrow$	(06)
Ь	N(E). dE = g(E). dEx f(E) - 3/2 /2 = 3/2 /2 =	01
	1 8 12 · 11 10 / - 1 -	01
	then integrating a simplify we get $E_{p}(o) = \frac{h^{2}}{8\pi n} \times \left(\frac{3n}{11}\right)^{\frac{3}{3}/3}$	03
ò	n; = 2.372 × 10 m, le = 3.30 m/1/2	
	Mh=0:18 m; e (Me+Mh)	9 01
	Si= nie (11 + Mh)) 01
	Substitution & Galculation	02
	$S_i = \frac{1}{n_i \cdot e} \left(\frac{1}{1.8 + 10} \right)$ Substitution & Galculation $S_i = \frac{1}{1.35 \times 10^{-37}} = 7.41 \times 10^{36} \text{ p.m}$	(OA)
	De la	

Page 1

B G Naga: 371 14.

Question Number	Solution	Marks Allocated
ಒ ಡ್ರ	Fermi factor, f(E) = 1 E ET +1	01
	(i) ELEx at T=06, f(E)=1 ->	0
	(ii) E>Ex at T=OK, f(E)=0 ->	01
	(ii) E=Ex at T70% P(E)=0.5	01
	Braphical fig with conclusion -	66
l l	Consideration of I = Ne. EAV->	01
	J=I/A => Ne. eV	01
	J= o. E, upto oe = Ne. elle, oh= Nh. ellh-	01
	o= e(Ne. fle + Nh. flh)	01
	For intrinsic semiconductor or; = Ni. e (le+Mh)	01
5	n= No of free electrons atom x NAXD	01
	n= 5.863×10 ²⁸ /m3	01
	$E_F = \frac{h^2}{8m} \times \left(\frac{3n}{11}\right)^{2/3} \longrightarrow$	01
	$E_{F} = 5.5 \text{ eV}$	01

Question Number	Solution	Marks Allocated
3 @	Definition for Unit Cell and Primitive Cell Explanation for Seven Crystals	03
	System, (i) Cubic (2) Tetragonal/ (3) Orthorhombic (4) Monoclinic (5) Triclinic (6) Hexagonal (7) Rhombohedral	07
9	(i) (100) (ii) (110) (iii) (112)=	05
4 3	Figure with Englanation \Rightarrow dhap = z . $cosx = y$. $coss = z$. $cosx = y$. $coss = z$. $cosx = y$. $coss = z$. $cosx = z$.	02 01 01
	For scc, $a = b = c = 1$.: $d_{hkl} = \frac{\alpha}{\sqrt{h^2 + k^2 + l^2}}$	01
	Packing factor for SCC, 2 0.52	
B	$d = 3 \times 10^{10} \text{ m}, n = 2, \theta = 10^{\circ}30^{\circ}$ $n \lambda = 2d \text{ sino}$	01
	Substitution & calculations $\lambda = 0.55 \times 10^{-10}$	03
	Page 3	<u></u>

G.S. Institute of factors agamangals Tq. Muons

B G S INSTITUTE OF TECHNOLOGY

DEPARTMENT OF PHYSICS

Academic Year: 2019 – 2020 (ODD SEM)

For the Period: 20/09/2019 to 30/09/2019

Assignment - I

Faculty Name: SHANKARA S R Semester: I

Section: B & C

Course Name: ENGINEERING PHYSICS

Course Code: 18PHY-12

SI.	Questions	COs		
No.	Questions			
1	What are shock waves? Mention the characteristics of shock waves.	1		
2	With a neat diagram explain the construction and working of Reddy tube. Mention any four applications of Shock waves	1		
3	What is mach number? Distinguish between acoustic, subsonic and supersonic waves.	1		
4	State and explain laws of conservation of mass, energy and momentum			
5	Define simple harmonic motion. Derive the differential equation for simple harmonic motion using Hooke's law.			
6	What are damped oscillations? Give the theory of damped oscillations and hence discuss the case of critical damping.			
7	Discuss the following damped oscillations. (i) Over damping (ii) Critical damping (iii) Under damping			
8	Give the theory of forced vibrations and hence obtain the expression for amplitude.			
9	Write short notes on (i) Damped oscillations (ii) Forced oscillations (iii) Resonance (iv) Sharpness of resonance (v) Quality factor.	1		

Signature of Course Coordinator

Karnataka (INI)

Signature of HOD

HOD

Dept. of Pre Engineer BGS Institute of Techn. B G Nagara- 57144

Nagamangala Taluk, Mandya District.

B G S INSTITUTE OF TECHNOLOGY

DEPARTMENT OF PHYSICS

Academic Year: 2019 – 2020 (ODD SEM)

For the Period: 20/11/2019 to 27/11/2019

Assignment II

Faculty Name: SHANKARA S R

Semester: I Section: B & C

Course Name: ENGINEERING PHYSICS

Course Code: 18PHY-12

SI. No.	Questions			
1	Explain the following parameters. (i) Acceptance angle (ii) Numerical aperture (iii) V-Number (iv) RRID	3		
2	(i) Acceptance angle (ii) Numerical aperture in terms of R.I of core & Derive an expression for numerical aperture in terms of R.I of core &	3		
3	clad. Explain the different types of Optical fiber with suitable diagram.	3		
7.0	Explain basics the of point to point communication system.	3		
4	Explain the seven basic crystal system with geometrical figure.	3		
5	Calculate the atomic packing factor for SCC, BCC & FCC.	3		
6	Explain the construction and working function of Bragg's X-ray	3		
7	spectrometer. Derive the expression for inter planar spacing in terms of Miller Indices.	. 3		
8	Derive the expression for inter planar spaces.			

anangala Fq. Mandy

Signature of HOD

HOD

Dept. of Pre Engineering BGS Instructe of Technology

BG - gara- 571448

Nagamangala iaiuk, Mandya District.

B G S INSTITUTE OF TECHNOLOGY

DEPARTMENT OF PHYSICS

Academic Year: 2019 - 2020 (ODD SEM)

For the Period: 01/12/2019 to 10/12/2019

Assignment III

Faculty Name: SHANKARA S R Semester: I

Section: B & C

Course Name: ENGINEERING PHYSICS

Course Code: 18PHY-12

SI. No.	Questions					
1	State Hook's law. Explain stress versus strain diagram with the help of Hook's law statement.					
2	Explain the different types of moduli of elasticity.	2				
3	Define (i)Longitudinal strain co-efficient(α) (ii)Lateral strain co-efficient(β) (iii) Poission's ratio(σ)	2				
4	What is beam? Derive the expression for moment of beam for rectangular cross section.	2				
5	Obtain an expression for the Young's modulus Y of the material of a single cantilever for rectangular cross section.	2				
6	Derive the expression for couple per unit twist of a solid cylinder.					
7	What are torsional oscillations? Give the expression for time period of torsional oscillations. Mention the applications of torsional oscillations.	2				

Signature of Course Coordinator

or uncut of Engg. Physics s. Institute of Technolog C Naga: 571 448 angala Tq, Mandya A. mounge

Signature of HOD

HOD Dept. of Pre Engineering

BGS Institute of Technology BGN ara- 571448

Nagamangala Mandya District.

Register Numbers for Electronics & Communication Engineering students of 2019-20

	admissions	Register Number
S1 No	Name	19ECE001
1	ABHISHEK S HULLOLLI	19ECE002
2	ADARSHA T S	19ECE002
3	AFREEN FATHIMA	19ECE004
4	AJAY B K	19ECE005
5	AKASH S M	19ECE006
6	ARFA FATHIMA	19ECE007
7	ARUN KUMAR S	19ECE007
8	ASHWINI D K	19ECE008
9	BHARATHESH K C	
10	BHAVANA C	19ECE010
11	BHAVANA K R	19ECE011
12	BHOOMIKA N	19ECE012
13	CHANDAN M A	19ECE013
14	CHARITHA H R	19ECE014
15	CHETHAN B GOWDA	19ECE015
16	CHETHANA D M	19ECE016
17	CHITRA K T	19ECE017
18	DARSHAN R GOWDA	19ECE018
19	DEEPASHREE K B	19ECE019
20	DEEPASHREE T	19ECE020
21	DEEPTHI В Н	19ECE021
22	DEEPTHI N M	19ECE022
23	DHAMINI G N	19ECE023
24	DHANU N GOWDA	19ECE024
25	DHANUSH C K	19ECE025
26	DHANUSHGOWDA D H	19ECE026
27	DHARANI N J	19ECE027
28	DHYAN A P	19ECE028
29	DILIP SHESHADRI M	19ECE029
30	DISHA G	19ECE030
31	DIVYASAMEEKSHA K	19ECE031
32	GAGAN L D	19ECE032
33	GANESH M	19ECE033
34	GOUTHAM D	19ECE034
35	GOWDA GEEVITA NANJAPPA	19ECE035
36	H C PRAJWAL GOWDA	19ECE036
37	HARSHITHGOWDA C R	19ECE037
38	HIFZA	19ECE038
39	ISHITHA N	19ECE039
		19ECE040
40	JEEVITHA B R	19ECE041
41		19ECE042
42		19ECE043

Register Numbers for Electronics & Communication Engineering students of 2019-20

Sl No	admissions Name	Register Number
44	KARTHIK U S	19ECE044
45	KAVYASHREE C S	19ECE045
46	KAVYASHREE T G	19ECE046
47	KISHOR L	19ECE047
48	KRUTHIKA K V	19ECE048
49	KUSHAL A B	19ECE049
50	KUSHAL K T	19ECE050
51	KUSUMA H N	19ECE051
52	LIKITH GOWDA C S	19ECE052
53	MADHU P	19ECE053
54	MADHUSUDAN K G	19ECE054
55	MAHALAKSHMI D R	19ECE055
56	MANU M R	19ECE056
57	MITHUN GOWDA G	19ECE057
58	MOHANRAJU V S	19ECE058
59	MONIKA M M	19ECE059
60	NAYEEM-UR-RAHMAN	19ECE060
61	NIHARIKA S	19ECE061
62	NIKHILESH GOWDA U S	19ECE062
63	NISARGA H S	19ECE063
64	NISARGA M D	19ECE064
65	NISCHAY Y	19ECE065
66	NISHA B R	19ECE066
67	NITHEESH G	19ECE067
68	NITHYARAJ G P	19ECE068
69	NITHYASHREE K N	19ECE069
70	NOOR AYESHA	19ECE070
71	PAVANKUMAR S	19ECE071
72	PAVITHRA N P	19ECE072
73	PAYAL B S	19ECE073
74	POOJA A	19ECE074
75	РООЈА В С	19ECE075
76	POORVIK M P	19ECE076
77	POORVIKA T P	19ECE077
78	PRAJWAL A H	19ECE078
79	PRATHIBHA M E	19ECE079
80	PREETHI L	19ECE080
81	PRIYANKA S D	19ECE081
82	PRUTHVI B R	19ECE082
83	RACHANA T	19ECE083
84	RAKSHITHA C S	19ECE084
85	RAMYA K L	19ECE085
86	ROHITH GOWDA K S	19ECE086

Register Numbers for Electronics & Communication Engineering students of 2019-20

S1 No	admissions Name	Register Number
87	SAFINATAJ	19ECE087
88	SAGAR A N	19ECE088
89	SAGAR B S	19ECE089
90	SAGAR C S	19ECE090
91	SANDHYA C	19ECE091
92	SANJAY H B	19ECE092
93	SANTHOSH B M	19ECE093
94	SHASHANK T P	19ECE094
95	SHIFA MOHAMADI	19ECE095
96	SHIVA KUMAR H K	19ECE096
97	SHIVA KUMAR J	19ECE097
98	SHREELEKHA S	19ECE098
99	SHWETHA N	19ECE099
100	SINCHANA N L	19ECE100
101	SNEHA B S	19ECE101
102	SRINIDHI B N	19ECE102
103	SUDEEP R	19ECE103
104	SUDEEP V J	19ECE104
105	TEJASGOWDA H S	19ECE105
106	TEJASWINI R	19ECE106
107	THRIPURA S G	19ECE107
108	THUSHTI K	19ECE108
109	UMME SHAMSHIYA	19ECE109
110	VARSHINI S	19ECE110
111	VARUN L	19ECE111
112	VIDYASHREE B T	19ECE112
113	VINAY S S	19ECE113
114	VIVEK GOWDA D S	19ECE114
115	YASHWANTH A S	19ECE115

HOD
Begistrer (Production)
BGS Institute of Technology
B G Nagara- 571448

Nagamangala Taluk, Mandya District.

Register Numbers for Civil Engineering students of 2019-20 admissions

No	Name	Register Number
	AISHWARYA T	19CVE001
	AJAY H J	19CVE002
	ARUNKUMAR B R	19CVE003
4	CHANDAN A N	19CVE004
5	CHANDANA T R	19CVE005
6	DARSHAN GOWDA R	19CVE006
7	DARSHAN M L	19CVE007
8	DHANUSH P K	19CVE008
9	DURGESH MASTAPPA NAIK	19CVE009
10	FARHAN AHMED	19CVE010
11	GOUTHAM D G	19CVE011
123	HARSHITH M GOWDA	19CVE012
13	K R MAHENDRA	19CVE013
14	KAMALESH K S	19CVE014
15	KAVANA B P T olspasmans	19CVE015
16	KISHOR R	19CVE016
17	KUSHAL D S	19CVE017
18	LIKITH KUMAR M V	19CVE018
19	MANJUNATH G K	19CVE019
20	MANOJ G N	19CVE020
21	MANOJ K	19CVE021
22	MOHAMMED UMRAZ	19CVE022
23	MONISHA H	19CVE023
24	NAVYA D	19CVE024
25	NITHIN P	19CVE025
26	PAVAN R J	19CVE026
27	PAVANGOWDA T G	19CVE027
28	PAVANKUMAR	19CVE028
29	POOJA C	19CVE029
30	PRAVEEN KUMAR S B	19CVE030
-	PREETHAM K P	19CVE031
31	PURUSHOTHAM	19CVE032
	SAHANA A	19CVE033
33	SAHANA Y V	19CVE034
34		19CVE035
35		19CVE036
36		19CVE037
37		19CVE038
38		19CVE039
39		19CVE040
40	The state of the s	19CVE041
41		19CVE042

Register Numbers for Civil Engineering students of 2019-20 admissions

SI No	Name	Register Number
43	VARUN N GOWDA	19CVE043
44	VISHWAKUMAR A R	19CVE044
45	YASHWANTH H B	19CVE045
46	YUVARAJU U C	19CVE046
47	ZOYA MULK	19CVE047

HOD

Dept. of Pre Engineering BGS Institute of Technology B G Nagara- 571448

Nagamangala Taluk, Mandya District.

||Jai Sri Gurudev||

Sri Adichunchanagiri Shikshana Trust ®

B.G.S. INSTITUTE OF TECHNOLOGY PROCTOR DETAILS

SL NO	NAME OF THE STUDENT	USN	STUDENT	PARENTS	E - Mail ID
1	AISHWARYA T	19CVE001	6361642757	9964580612	aishnayak211@gmail.com
2	AJAY H.J	19CVE002	9740252964	9741533264	ajayg3162@gmail.com
3	ARUNKUMAR B.R	19CVE003	8747937968	9535147214	arunhunsuru@gmail.com
4	CHANDAN A.N	19CVE004	8431364797	9900569199	chandannagarajugowda@gmail.com
5	CHANDANA T R	19CVE005	6363598815	9483680142	rameshsughunacd@gmail.com
6	DARSHAN GOWDA R	19CVE006	9632437748	9448610048	darshangowda2129@gmail.com
7	DARSHAN M L	19CVE007	6360105185	9980204344	Darshandarshu419@gmail.com
8	DHANUSH P K	19CVE008	8970321962	8970321962	dhanushpk2002@gmail.com
9	DURGESH MASTAPPA NAIK	19CVE009	9113509810	7975319832	durgeshkodsul@gmail.com
10	FARHAN AHMED	19CVE010	8050536312	8197300598	sharifarhan0@gmail.com
11	GOUTHAM D G	19CVE011	9945976936	9663936246	teju7740@gmail.com
12	HARSHITH M GOWDA	19CVE012	6363065644	9164807585	hmgowda119@gmail.com
13	K R MAHENDRA	19CVE013	9900290776	7259651936	Chinnumahendra309@gmail.com
14	KAVANA B P	19CVE015	8105103438	8183037565	kavanabp2@gmail.com
15	KISHOR R	19CVE016	6363465567	9482454990	kishorrgowda.01@gmail.com

constor In

HOD

Dept. of Pre Engineering
BGS Institute of Technology
B G Nagara- 571448
Nagamangala Taiuk, Managa, District.

II Jai Sri Gurudev II

BGS Institute of Technology

Department of Engineering Physics

List of Slow Learners Identified

PERIOD	From: 05/08/2019 To: 14/12/2019
	Yes.
SEM	I Sem
SUBJECT NAME & CODE	Engineering Physics & 18PHY12
STAFF NAME	SHANKARA S R/RANJITHA K N
NO. OF STUDENTS IDENTIFIED	08

oordinator

Signature of HOD

Dept. of Pre Engineering
BUS Institute of Technology

B G Nagara- 571448
Nagamangala Taiuk, Mandya District.

II Jai Sri Gurudev II

BGS Institute of Technology

Department of Engineering Physics

Slow learners Attendance for the batch 2018-19

Sl.	Reg No	Name	1	2	3	4	5	6	7	8	9	10
No		160										
1	19ECE021	DEEPTHI B H	1	2	3	A	4	5	6	.7	A	8
2	19ECE049	KUSHAL A B	A		2.	3	4	5	6	7	8	9
3	19ECE062	NIKILESH GOWDA U S	1	2	3	A	5	6	7	8	9	10
4	19ECE070	NOOR AYESHA	1	2	3	4	5	6	7	8	9	10
5	19CVE020	MANOJ G N	1	2	3	4	5	6	7	A	8	9
6	19CVE025	NITHIN P	1.	2	3	4	5	6	7	8	9	10
7	19CVE040	SUMAN C	1	2	3	4	5	6	7	8	9	16
8	19CVE047	ZOYA MULK	A	1	2	3	4	5	6	7	8	9

Topics Covered

Sl. No	Topic Identified	Delivery Date	Time
1	Construction & Working function of Reddy Shock Tube	14/10/2019	
2	Damped Oscillations & Forced Osillations	15/10/2019	
3	Heisenberg's Uncertainty Principle & its application	21/10/2019	Æ
4	Time Independent Schrodinger wave equation	22/10/2019	Evening Time (4.30PM-5.30PM)
5	Particle in an one dimensional potential well of infinite height	23/10/2019	.30PM
6	Different types of Optical Fiber	29/10/2019	Time (4
7	Construction & Working function of CO ₂ Laser Source	30/10/2019	ening
8	Energy density expression in terms of Einstein's Coefficients	31/10/2019	Ą
9	Seven Basic Crystal System, Unit cell, Primitive Cell	18/11/2019	
10	Atomic Packing factor for SCC, BCC, & FCC	19/11/2019	

List of Slow Learners

SL.NO	Name	Reg No	FIRST IA	Final IA
1	DEEPTHI B H	19ECE021	08	19
2	KUSHAL A B	19ECE049	13	19
3	NIKILESH GOWDA U S	19ECE062	08	12
4	NOOR AYESHA	19ECE070	AB	11
5	MANOJ G N	19CVE020	02	11
6	NITHIN P	19CVE025	00	11
7	SUMAN C	19CVE040	AB	12
8	ZOYA MULK	19CVE047	07	10

|| Jai Sri Gurudev || Adichunchanagiri Shikshana Trust (R) BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

Sl No	Name	Register Number	Engg. Physics Result
1	AISHWARYA T	19CVE001	PASS
2	AJAY H J	19CVE002	FAIL
3	ARUNKUMAR B R	19CVE003	PASS
4	CHANDAN A N	19CVE004	FAIL
5	CHANDANA T R	19CVE005	PASS
6	DARSHAN GOWDA R	19CVE006	PASS
7	DARSHAN M L	19CVE007	PASS
8	DHANUSH P K	19CVE008	PASS
9	DURGESH MASTAPPA NAIK	19CVE009	PASS
10	FARHAN AHMED	19CVE010	PASS
11	GOUTHAM D G	19CVE011	PASS
12	HARSHITH M GOWDA	19CVE012	FAIL
13	K R MAHENDRA	19CVE013	PASS
14	KAMALESH K S	19CVE014	PASS
15	KAVANA B P	19CVE015	PASS
16	KISHOR R	19CVE016	FAIL
17	KUSHAL D S	19CVE017	FAIL
18	LIKITH KUMAR M V	19CVE018	PASS
19	MANJUNATH G K	19CVE019	PASS
20	MANOJ G N	19CVE020	PASS
21	MANOJ K	19CVE021	FAIL
22	MOHAMMED UMRAZ	19CVE022	PASS
23	MONISHA H	19CVE023	PASS
24	NAVYA D	19CVE024	PASS
25	NITHIN P	19CVE025	FAIL
26	PAVAN R J	19CVE026	PASS
27	PAVANGOWDA T G	19CVE027	FAIL
28	PAVANKUMAR	19CVE028	PASS
29	POOJA C	19CVE029	PASS
30	PRAVEEN KUMAR S B	19CVE030	PASS
31	PREETHAM K P	19CVE031	PASS
32	PURUSHOTHAM	19CVE032	PASS
33	SAHANA A	19CVE033	PASS
34	SAHANA Y V	19CVE034	FAIL
35	SAIF SAQLAIN	19CVE035	FAIL
36	SHRIDHARA J K	19CVE036	PASS
37	SINCHANA C R	19CVE037	PASS

Engg.
Physics
Lab Result
PASS
PASS
FAIL
PASS

38 SINCHANA K 19C	VE038 PASS
	AL SOME AND A SERVICE CO.
39 SUHAS G P 19C	VE039 PASS
40 SUMAN C 19C	VE040 PASS
41 TARUN M S 19C	VE041 PASS
42 UMMER M 19C	VE042 PASS
43 VARUN N GOWDA 19C	VE043 PASS
44 VISHWAKUMAR A R 19C	VE044 PASS
45 YASHWANTH H B 19C	VE045 PASS
46 YUVARAJU U C 19C	VE046 PASS
47 ZOYA MULK 19C	VE047 PASS

PASS	
PASS	
	PASS PASS PASS PASS PASS PASS PASS PASS

Total Percentage	79%
Number of students Fail	10
Number of students Pass	37
Total number of Students	47

47	
46	
1	
98%	

HOD

Dept. of Pre Engineering
BGS Institute of Technology
B G Nagara- 571448
Nagamangala Taluk, Mandya District.

|| Jai Sri Gurudev || Adichunchanagiri Shikshana Trust (R) BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

SI No	Name	Register Number	Engg. Physics Result
1	ABHISHEK S HULLOLLI	19ECE001	PASS
2	ADARSHA T S	19ECE002	PASS
3	AFREEN FATHIMA	19ECE003	PASS
4	AJAY B K	19ECE004	PASS
5	AKASH S M	19ECE005	PASS
6	ARFA FATHIMA	19ECE006	PASS
7	ARUN KUMAR S	19ECE007	FAIL
8	ASHWINI D K	19ECE008	PASS
9	BHARATHESH K C	19ECE009	PASS
10	BHAVANA C	19ECE010	PASS
11	BHAVANA K R	19ECE011	PASS
12	BHOOMIKA N	19ECE012	PASS
13	CHANDAN M A	19ECE013	PASS
14	CHARITHA H R	19ECE014	PASS
15	CHETHAN B GOWDA	19ECE015	PASS
16	CHETHANA D M	19ECE016	PASS
17	CHITRA K T	19ECE017	PASS
18	DARSHAN R GOWDA	19ECE018	PASS
19	DEEPASHREE K B	19ECE019	PASS
20	DEEPASHREE T	19ECE020	PASS
21	DEEPTHI В Н	19ECE021	PASS
22	DEEPTHI N M	19ECE022	PASS
23	DHAMINI G N	19ECE023	PASS
24	DHANU N GOWDA	19ECE024	PASS
25	DHANUSH C K	19ECE025	PASS
26	DHANUSHGOWDA D H	19ECE026	PASS
27	DHARANI N J	19ECE027	PASS
28	DHYAN A P	19ECE028	PASS
29	DILIP SHESHADRI M	19ECE029	PASS
30	DISHA G	19ECE030	PASS
31	DIVYASAMEEKSHA K	19ECE031	PASS
32	GAGAN L D	19ECE032	PASS
33	GANESH M	19ECE033	PASS
34	GOUTHAM D	19ECE034	PASS
35	GOWDA GEEVITA NANJAPPA	19ECE035	PASS
36	H C PRAJWAL GOWDA	19ECE036	PASS
37	HARSHITHGOWDA C R	19ECE037	PASS

Engg. Physics Lab
Result
PASS

38	HIFZA	19ECE038	PASS
39	ISHITHA N	19ECE039	PASS
40	JAYANTH M R	19ECE040	PASS
41	JEEVITHA B R	19ECE041	PASS
42	KARTHIK K L	19ECE042	PASS
43	KARTHIK P K	19ECE043	FAIL
44	KARTHIK U S	19ECE044	PASS
45	KAVYASHREE C S	19ECE045	PASS
46	KAVYASHREE T G	19ECE046	PASS
47	KISHOR L	19ECE047	PASS
48	KRUTHIKA K V	19ECE048	PASS
49	KUSHAL A B	19ECE049	PASS
50	KUSHAL K T	19ECE050	PASS
51	KUSUMA H N	19ECE051	PASS
52	LIKITH GOWDA C S	19ECE052	PASS
53	MADHU P	19ECE053	PASS
54	MADHUSUDAN K G	19ECE054	PASS
55	MAHALAKSHMI D R	19ECE055	PASS
56	MANU M R	19ECE056	PASS
57	MITHUN GOWDA G	19ECE057	PASS
58	MOHANRAJU V S	19ECE058	PASS
59	MONIKA M M	19ECE059	PASS
60	NAYEEM-UR-RAHMAN	19ECE060	PASS
61	NIHARIKA S	19ECE061	PASS
62	NIKHILESH GOWDA U S	19ECE062	PASS
63	NISARGA H S	19ECE063	PASS
64	NISARGA M D	19ECE064	PASS
65	NISCHAY Y	19ECE065	FAIL
66	NISHA B R	19ECE066	PASS
67	NITHEESH G	19ECE067	FAIL
68	NITHYARAJ G P	19ECE068	PASS
69	NITHYASHREE K N	19ECE069	PASS
70	NOOR AYESHA	19ECE070	PASS
71	PAVANKUMAR S	19ECE071	PASS
72	PAVITHRA N P	19ECE072	PASS
73	PAYAL B S	19ECE073	PASS
74	POOJA A	19ECE074	PASS
75	POOJA B C	19ECE075	PASS
76	POORVIK M P	19ECE076	PASS
77	POORVIKA T P	19ECE077	PASS
78	PRAJWAL A H	19ECE078	PASS
79	PRATHIBHA M E	19ECE079	PASS
80	PREETHI L	19ECE080	PASS
81	PRIYANKA S D	19ECE081	PASS
82	PRUTHVI B R	19ECE082	PASS

		_
	PASS	
	PASS	_
	PASS	_
	PASS	-
	PASS	-
		-
	PASS	_
	PASS	
	PASS	_
	PASS	
	PASS	_
	PASS	
	PASS	-
	PASS	-
-	PASS	-
	PASS	-
	PASS	-
		-
	PASS	_
	PASS	_
	FAIL	
	PASS	_
	PASS	_
	PASS	
	PASS	
	PASS	
	PASS	_
	PASS	
	PASS	
	PASS	_
	PASS	-
	PASS	-
	PASS	-
57.5		
	PASS	_
-	PASS	_
	PASS	_
	PASS	
	PASS	_

PASS	19ECE083	RACHANA T	83
PASS	19ECE084	RAKSHITHA C S	84
PASS	19ECE085	RAMYA K L	85
PASS	19ECE086	ROHITH GOWDA K S	86
PASS	19ECE087	SAFINATAJ	87
PASS	19ECE088	SAGAR A N	88
PASS	19ECE089	SAGAR B S	89
PASS	19ECE090	SAGAR C S	90
PASS	19ECE091	SANDHYA C	91
PASS	19ECE092	SANJAY H B	92
	19ECE093	SANTHOSH B M	93
PASS	19ECE094	SHASHANK T P	94
PASS	19ECE095	SHIFA MOHAMADI	95
PASS	19ECE096	SHIVA KUMAR H K	96
PASS	19ECE097	SHIVA KUMAR J	97
PASS	19ECE098	SHREELEKHA S	98
PASS	19ECE098	SHWETHA N	99
PASS	19ECE100	SINCHANA N L	100
PASS	19ECE101	SNEHA B S	101
PASS	19ECE102	SRINIDHI B N	102
PASS	19ECE102	SUDEEP R	103
PASS	19ECE103	SUDEEP V J	104
PASS	19ECE104	TEJASGOWDA H S	105
PASS		TEJASWINI R	106
PASS	19ECE106	THRIPURA S G	107
PASS	19ECE107	THUSHTI K	108
PASS	19ECE108	UMME SHAMSHIYA	109
PASS	19ECE109	VARSHINI S	110
PASS	19ECE110	VARUN L	111
PASS	19ECE111	VIDYASHREE B T	112
PASS	19ECE112	VINAY S S	113
PASS	19ECE113	VIVEK GOWDA D S	114
PASS	19ECE114	YASHWANTH A S	115
PASS	19ECE115	THE A S	

	PASS
	PASS
	FAIL
	PASS
L	PASS
	PASS
L	PASS

Ü	97%
Total Percentage	4
Number of student Fail	111
Number of student Pass	115
Total number of Student	

115	
113	
2	
98%	

wed who

HOD
Dept. of Pre Engineering
BGS Institute of Technology
B G Nagara- 571448
Nagamangala Taiuk, Mandya District.

|| Jai Sri Gurudev ||

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

CO-PO Attainment (18 Scheme)

Course Code	Course Name	Staff Name	Academic Year	Sem	Programme
18PHY12	Engineering Physics	SHANKARA S R	2019	I	B.E/CV

Course Outcome	60%	30%	10%	
	CIE	SEE	CES	TOTAL
CO1	2.5	0.61	2.69	1.95
CO2	2.61	0.61	2.56	2.01
CO3	2.09	0.61	2.53	1.69
CO4	1.85	0.61	2.44	1.54
CO5	2.48	0.61	2.78	1.95

СО	co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
18C102.1	1.95	3	2										
18C102.2	2.01	2	2	1									
18C102.3	1.69	3	2										
18C102.4	1.54	3	2										
18C102.5	1.95	3	2				*						
SUM		14	10	1									
AVG		2.8	2	1									
Weighted Sum		25.41	18.28	2.01									
PO Attainment		1.69	1.22	0.67									

Note: 3 =Strong Contribution 2 =Average Contribution 1 =Weak Contribution

ruedur & HOD

HOD

Dept. of Pre Engineering
BGS Institute of Technology

B G Nagara- 571448 Nagamangala Taluk, Mandya Distric

|| Jai Sri Gurudev ||

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

CO-PO Attainment (18 Scheme)

Course Code	Course Name	Staff Name	Academic Year	Sem	Programme
18PHY12	Engineering Physics	SHANKARA S R /RANJITHA K N	2019	I	B.E/E&C

Course Outcome	60%	30%	10%	
	CIE	SEE	CES	TOTAL
CO1	2.14	1.44	2.70	1.99
CO2	2.44	1.44	2.60	2.16
CO3	2.17	1.44	2.60	1.99
CO4	1.83	1.44	2.73	1.80
CO5	2.2	1.44	2.56	2.01

СО	co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
18C102.1	1.99	3	2										
18C102.2	2.16	2	2	1									
18C102.3	1.99	3	2										
18C102.4	1.80	3	2										
18C102.5	2.01	3	2										
SUM		14	10	1									
AVG		2.8	2	1									
Weighted Sum		27.69	19.90	2.16									
PO Attainment		1.85	1.33	0.72									

Note: 3 =Strong Contribution 2 =Average Contribution

1 = Weak Contribution

HOD

HOD

wederg

Dept. of Pre Engineering BGS Institute of Technology

B G Nagara- 571448 Nagamangala Taluk, Mandya District

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

CO-PO Attainment(18 Scheme)

Course Code	Course Name	Staff Name	Academic Year	Sem	Programme
18PHYL16	Engineering Physics Lab	SHANKARA S R	2019	I	B.E/CV

60%	30%	10%	
CIE	SEE	CES	TOTAL
	1.69	2.61	2.51
	1.69	2.48	2.50
	1.69	2.57	2.51
	1.69	2.5	2.50
	1.69	2.59	2.51
	1.69	2.64	2.52
	2.91 2.91 2.91 2.91 2.91	CIE SEE 2.91 1.69 2.91 1.69 2.91 1.69 2.91 1.69 2.91 1.69	CIE SEE CES 2.91 1.69 2.61 2.91 1.69 2.48 2.91 1.69 2.57 2.91 1.69 2.5 2.91 1.69 2.59

		2 = Average Contribution	1 = Weak Contribution
Note:	3 = Strong Contribution	Z = Average Contribution	

3 - 3110118	Contribut	THE RESERVE THE PERSON NAMED IN			Character and Control of Control	DO6	DO7	PO8	PO9	PO10	PO11	PO12
СО	PO1	PO2	PO3	PO4	POS	POO	101	100				
2.51	3	1										
2.50	3	1										
2.51	3	1										
2.50	3	1									-	
2.51	3	1										
2.52	3	2	1		1	1						-
	15	7	1		1	1						-
	3	1.17	1		1	1			1			
	48.15	18.73	2.68		2.68	2.68			2.68			
	2.51	0.98	0.84	1	0.84	0.84	H		0.84			
	2.51 2.50 2.51 2.50 2.51	CO PO1 2.51 3 2.50 3 2.51 3 2.51 3 2.52 3 15 3 48.15	CO PO1 PO2 2.51 3 1 2.50 3 1 2.51 3 1 2.50 3 1 2.51 3 1 2.51 3 1 2.52 3 2 15 7 3 1.17 48.15 18.73	CO PO1 PO2 PO3 2.51 3 1 2.50 3 1 2.51 3 1 2.50 3 1 2.51 3 1 2.52 3 2 1 3 1.17 1 48.15 18.73 2.68	CO PO1 PO2 PO3 PO4 2.51 3 1	CO PO1 PO2 PO3 PO4 PO5 2.51 3 1	CO PO1 PO2 PO3 PO4 PO5 PO6 2.51 3 1	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 2.51 3 1	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 2.51 3 1	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 2.51 3 1 1 1 1 1 2.50 3 1 1 1 1 1 2.50 3 1 1 1 1 1 1 2.51 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 1 <	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 2.51 3 1 1 1 1 1 2.50 3 1 1 1 1 2.50 3 1 1 1 1 2.51 3 1 1 1 1 2.52 3 2 1 1 1 6 15 7 1 1 1 1 1 3 1.17 1 1 1 1 1 48.15 18.73 2.68 2.68 2.68 2.68	CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 2.51 3 1

Course wher loo

HOD HOD

Dept. of Pre Engineering BGS Institute of Technology B G Nagara- 571449

Nagamangala Taluk, Mann

ict

|| Jai Sri Gurudev ||

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

CO-PO Attainment (18 Scheme)

Course Code	Course Name	Staff Name	Academic Year	Sem	Programme
18PHYL16	Engineering Physics Lab	SHANKARA S R /RANJITHA K N	2019	I	B.E/EC

Course Outcome	60%	30%	10%	
	CIE	SEE	CES	TOTAL
CO1	2.99	2.04	2.87	2.69
CO2	2.99	2.04	2.59	2.67
CO3	2.99	2.04	2.63	2.67
CO4	2.99	2.04	2.77	2.68
CO5	2.99	2.04	2.75	2.68
CO6	2.99	2.04	2.74	2.68

Note: 3 =Strong Contribution 2 =Average Contribution 1 =Weak Contribution

Note:	3 – 3001	ig Contrib	ution 2	- Avera	ge Cont	idution	1 -	weak (Contribut	.1011			
СО	СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
18C102.1	2.69	3	1							1			
18C102.2	2.67	3	1							1			
18C102.3	2.67	3	1							1			
18C102.4	2.68	3	1							1			
18C102.5	2.68	3	1							1			
18C102.6	2.68	3	2	1		1	1			1			
SUM		15	7	1		1	1			6			
AVG		3	1.17	1		1	1			1			
Weighted Sum		48.15	18.73	2.68		2.68	2.68			2.68			
PO Attainment		2.68	1.04	0.89		0.89	0.89			0.89			

Course Coordinator

HOD

HOD HOD

Dept. of Pre Engineering BGS Institute of Technology B G Nagara- 571448

Nagamangala Taluk, Mandya District.

||Jai Sri Gurudev|| **BGS INSTITUTE OF TECHNOLOGY**

BG Nagara -571448, Nagamangala Taluk

ACADEMIC AUDIT for the Academ	nic year 2019-20	(ODD/EVEN)
Name of the Faculty with Designation	SHANKARA S	
Course Name with code	DEnga, Physics DEnga, Physics L	& 18PHY-12 -ab & 18PHYL-26
	The state of the s	19111/2

Sl. No.	Contents	Seme	ster
1	Faculty profile	Theory	Lab
2	Vision and Mission of the Institute, Department, PEOs, PSOs, POs		
3	Calendar of Events (University, Institute and Department)		
4	Timetable (Class and Individual)		
5	Syllabus copy, CO – PO – PSO Mapping (with justification)		
6	Lesson Plan		
7	Previous Year University QPs & Question Bank		
8	Notes	L/	~
9	Assignments		
10	Assessment Tools & procedure for assessment of COs (IA Test, Assignment, Quizzes, SEE)		
11	Innovative teaching methods		
12	List of slow learners & remedial classes		
13	Procter Details (for allotted students)	~	
14	Report of guest lectures for the course if any		
15	Feedback report		
16	Course End Survey	V	
17	CO attainment	~	~
18	Result Analysis	-	V
19	PO / PSO attainment		V
20	Review of attainment (course attainment)		

Faculty: Flexibles
Internal Auditor; Rh.

HOD :

External Auditor 7

HOD

Dept. of Pre Engineering BGS Institute of Technology B G Nagara- 571448 Nagamangala Taluk, Mandya District.

A POPULATION OF THE POPULATION

| | Jai Sri Gurudev | |

Bus Institute of Technology Department of Engineering Physics

	Academic year	2019-20	(ODD / EVEN	D (For	E&Co.	Programme
Name of the Faculty with Designation	SHAN	KARA	S.R. ASS	t. Profes	\$0Y	
Course Name with code	Enga	· Phys	ics Theory	R 18PH	7-12	
	00		′ (•	

		Fee	d Back Repo	ort	No.	of Students p	articipated=	40		
Feedback Questions	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
Av. Rating	70%	74%	70%	73%	70 %	70%	73 %	72%	73%	74%
	Overall Feedback									

			Course End Survey	Y		
CO's	CO.1	CO.2	CO.3	CO.4	CO.5	CO.6
Av. Rating	20070	2.60	2.60	2.73	2.56	

			CO Attainment			
CO's	CO.1	CO.2	CO.3	CO.4	CO.5	CO.6
Attainment	1,99	2.16	1,99	1.80	2.01	

	PO / PSO Attainment													
PO/PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Attainment	1.85	1.33	0.72											

Analysis of CO, PO Attainment [Review of attainment (course attainment)]

CO attainment is satisfactory and suggest to improve pod and pod by taking special classes.

HOD

Dept. of Pre Engineering

Dept. of Pre Engineering
BGS Institute of Technology
B G Nagara- 571448

Nagamangala Taluk, Mandya District.

||Jai Sri Gurudev||

Bus Institute of Technology

Department of Engineering Physics

				Acad	emic year	2019-	20	(OD	D / EVE	V) (=	- 10			1
Name of the	Faculty	with Desig	gnation	Т	SHANI						or Ex	PRAY	nogra	mme
Course Nam	e with co	ode			Engg			Lak		12	SPHYL	- 16		
Feed Back Report No. of Students participated=40														
Feedback Questions	Q1		Q2	Q3	Q4		Q5	Q6		Q7	Q8	Q	9	Q10
Av. Rating 75 % 71 % 68 % 75 % 70 % 71 % 73 % 69 % 72 % 77 % Overall Feedback									77%					
							End Sur							
CO's		СО	.1	C	O.2	T	CO.3 CO.4				CO.5		CO.6	
Av. Rating		2.8	.7	2,	59	2	.63		2.77	-	2.75		2.	74
				***************************************		CO	Attainme	nt						
CO's		СО	.1	C	O.2	T	CO.3		CO.4		CO.5		. C(0.6
Attainment		2.6	9	2.	67	2	.67		2.68	3	2,68		2.	68
PO / PSO Attainment														
PO/PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Attainment	84.5	1.04	0.89		0.89	0.89			0.89					

Co attainment [Review of attainment (course attainment)]

Co attainment is satisfactory and

also satisfactory.

Dept. of Pre Engineering **BGS** Institute of Technology B G Nagara- 571448

Nagamangala Taluk, Mandya District

TO NOW

||Jai Sri Gurudev||

BuS Institute of Technology

Department of Engineering Physics

				Acade	mic year	2019	-20	(ODI) / EVE	N) (Fo	8 CV	Prog	ramn	ne)
Name of the	Faculty	with Des	ignation	ي	HANK	ARA	SIF	ζ,	As	et, F	20fe 280	or 0		J
Course Nam	e with co	ode		1			zicz 7		((PHY-			
Feed Back Report No. of Students participated=40														
Feedback Questions	Q1		Q2	Q3	Q4		Q5	Q6		Q7	Q8	Q)	Q10
Av. Rating							69%	72	%	12%	72%	73	%	74%
	Overall Feedback													
						Cours	e End Sur	vey						
CO's		C	0.1	CC	0.2		CO.3		CO.4		CO.5		C(0.6
Av. Rating		2.6	9	2,1	56	3	2.53	0	2.40	1	2.78	3		
	***************************************					CO	Attainmer	nt		*************************************				
CO's		C	0.1	CC	0.2		CO.3		CO.4		CO.5		CC	0.6
Attainment		1.9	5	2.	10		1.69		154		1.95			
	PO / PSO Attainment													
PO/PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Attainment	1.69	1.28	0.67					0				~		

Analysis of CO, PO Attainment [Review of attainment (course attainment)]

Co attainment is Satisfactory and Suggest to improve (specifical) classes.

Pod and Po3 by taking extra classes.

HOD

Dept. of Pre Engineering

BGS Institute of Technology

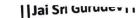
B G Nagara- 571448

Nagamangala Taiuk, Manuya District.

||Jai Sri Gurudev||

BGS Institute of Technology

Department of Engineering Physics


	Department of 218
	Academic year 2019-20 (ODD/EVEN) (For CV Programme)
Name of the Faculty with Designation Course Name with code	SHANKARA S.R. Aget. Professor U Engg. Physics Lab & 18PHYL - 16
	No. of Students participated=40
Feedback Q1 Q2 Ouestions	Q3 Q4 Q5 Q6 Q7 28% 73.% 74%
Av. Rating 74/0 691%.	Course End Survey CO.2 CO.3 CO.4 CO.5 CO.6 CO.2 CO.3 CO.4 CO.5 CO.6
CO's CO.1 Av. Rating 2.6 (CO Attainment CO.4 CO.5 CO.6 CO.2 CO.3 CO.4 CO.5 2.51 2.52
Attainment 2.51	PO / PSO Attainment PO / PSO Attainment PO / PSO PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2
PO/PSO PO1 PO2 PO3 Attainment 2.51 0.98 0.8	0.84

Analysis of CO, PO Attainment [Review of attainment (course attainment)]

Co attainment is satisfactory and po attainment is HOD

Dept. of Pre Engineering

Nagamangala Taluk, Mandya District.

3GS Institute of TechnClogy

Department of Engineering Physics

Academic Year 2019-20 (ODD/EVEN)

	Aca demois	6000	NO CODE	
9	A Gasolino C. Res	ult Analysis CIE	Test-3	IA
		Test-2	1621-2	2.0
2 a	Test-1	14	10	34
22 (More than 76%)	23	21	41	OA
12-22 (41% to 75%)	3	23	2 12	0.9
12-22 (41% to 75%)	04			
TOTAL no of students	,	0	*	
TOTAL no of students	ran	Dynamamme		

For E&C Programme

Action taken for Slow learners:

Test-1 After the first internal the slow learners are identified to and Remedial classes are conducted as per the schedule.

Test-2

Hernedial classes are continued.

		Result Analysis SEI	£	- 0'	Failed
	Total Appeared	FCD	FC	Pass %	
Course name with Code	Total Appear of		20	A 2A	0.2
Eng. Physice Theory	58	23	09	R4	0 ~
7018PHY-12		0			20

Remarks

Regult is very good

Dept. of Pre Engineering **BGS** Institute of Technology B G Nagara- 571448 Nagamangala Taluk, Mandva District

||Jai Sri Gurudev||

3GS Institute of Technology

Department of Engineering Physics

Academic Year 2019-20 (ODD/EVEN) Result Analysis CIE Test-1 Test-2 Test-3 IA 22 (More than 76%) 22 12-22 (41% to 75%) 20 12 (less than 40%) 05 34 TOTAL no of students

For C.V. Programme.
Action taken for Slow learners:
Test-1 After the first internal the slow learners are identified
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
and remedial closes are conducted as reacther eated
Test-2 and Remedial classes are conducted as per the schedule
L) Ressedial classes are continued.

Result Analysis SEE									
Course name with Code	Total Appeared	FCD	FC	Pass %	Failed				
Engg. Physics Theory	47	0.6	lO	21	10				

Remarks

Suggest la improve the Result.

HOD

Dept. of Pre EHODicering BGS Institute of Technology B G Nagara- 571448 Nagamangala Taluk, Mandya District. ||Jai Sri Gurudev||

B G S INSTITUTE OF TECHNOLOGY

BG Nagara-571448, Mandya

Department of Engineering Physics

COURSE FILE 2019 BATCH - II SEM

Course Coordinator

SHANKARA S R

Designation

Assistant Professor

Course Name

Engineering Physics

Course Code

18PHY12/22

Coordinator /

Signature of HOD

HOD

Dept. of Pre Engineering **BGS** Institute of Technology B G Nagara- 571448

Nagamangala Taluk, Mandya District.

Harris Continue of Trace of the second of th

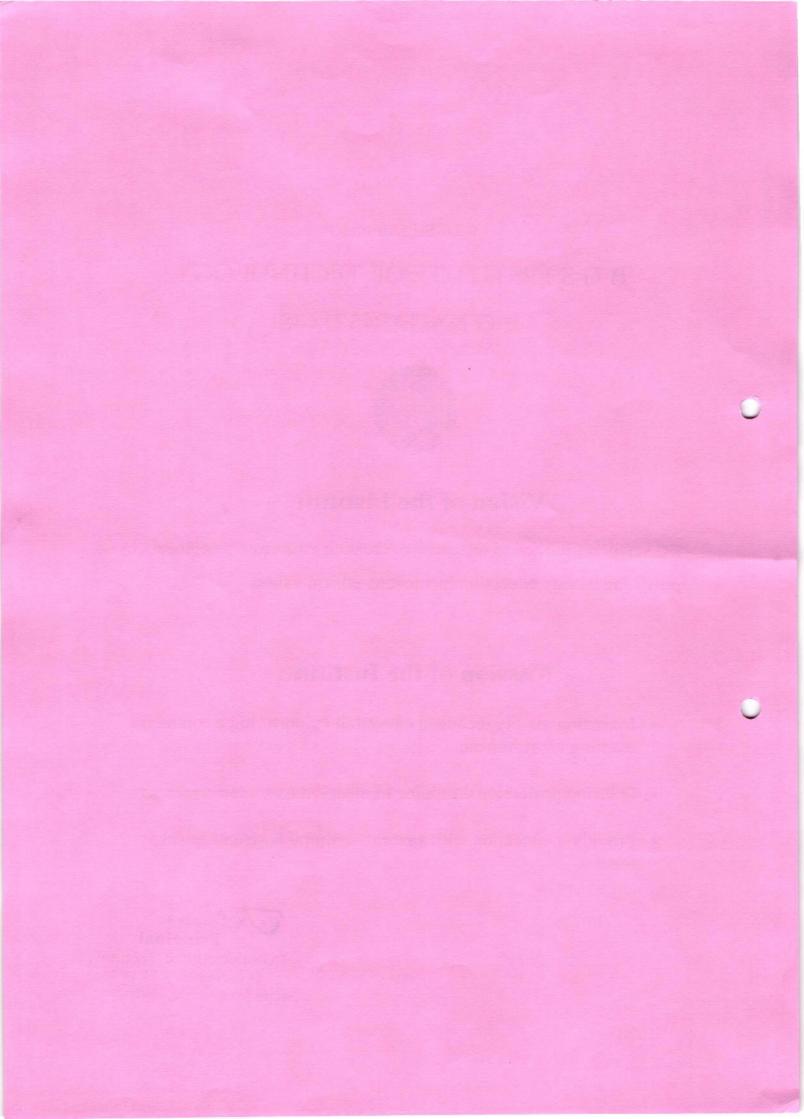
II Jai Sri Gurudev II

B G S INSTITUTE OF TECHNOLOGY B G NAGAR-571448

Vision of the Institute

BGSIT is committed to the cause of creating tomorrow's engineers by providing quality education inculcating ethical values.

Mission of the Institute


- Imparting quality technical education by nurturing a conducive learning environment.
- Offering professional training to meet industry requirements.
- Providing education with a moral cultural base and spiritual touch.

Principal

BGS Institute of Technology

B G Nagara - 571448,

Nagamangala Tq, Mandya Dist.

|| Jai Sri Gurudev ||

BGS INSTITUTE OF TECHNOLOGY Department of Engineering Physics

VISION

To enrich young minds with the knowledge of engineering physics by providing quality education and inculcating ethical values.

MISSION

- 1. To stimulate their technical knowledge by imparting basics of Engineering Physics.
- 2. To inculcate analytical thinking in students thereby enabling them to contribute to the betterment of society.

Course Learning Objectives

- 1. Students will demonstrate and understand the impact of physics concepts on applications for society.
- 2. Learn the basic concepts of physics, which are very much essential for understanding and solving challenges.
- 3. Gain the knowledge of newer concepts in physics for the better appreciation in technology.

Department of Engg. Physics of S. Institute of Technology
B.G. Naga: 571 142
B.G. Naga: 571 142
B.G. Naga: 571 142

BGS INSTITUTE OF TECHNOLOGY

BG Nagara - 571448, Karnataka, INDIA.

DEPARTMENT OF PHYSICS

BGSIT

Program outcomes

- 1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- 2. Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **3. Design/ Development of Solutions**: Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for the public health and safety, and the cultural, societal and environmental considerations.
- **4. Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
- **5. Modern Tool Usage:** Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6. The Engineer and Society:** Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- 7. Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- **9. Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life- long learning in the broadest context of technological change.

Sharla

HOD

Dept. of Pre Engineering

BGS Institute of Technology

B (- Sugara- 57) 448

1

Nagamangara basak Phandwa District."

|| JAI SRI GURUDEV ||

Sri Adichunchanagiri Shikshana Trust®

BGS INSTITUTE OF TECHNOLOGY

BG Nagara, Nagamangala Taluk, Mandya District, Karnataka State, India - 571448

CALENDAR OF EVENTS FOR BE II and IV SEMESTERS FOR THE ACADEMIC YEAR 2019-20

F	Mon	Tue	Wed	Thu	Fri	Sat	Sun				
E						1	2				
B	3	4	5	6	7	8	9				
R	10	11	12	13	14	15	16				
A	17	18	19	20	21	22	23				
R	24	25	26	27	28	29					
Y	Number of Working Days - 17										

10 - Registration & Commencement of 2nd and

ACTIVITIES

4th Semester Classes

21 - Maha Shivaratri

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
							1
M	2	3	4	5	6	7	8
AR	9	10	11	12	13	14	15
C	16	17	18	19	20	21	22
H	23	24	25	26	27	28	29
	30	31					
		Num	ber of	Worki	ng Da	ys - 25	

19, 20, 21 - Test 1

25 - Chandramana Ugadi

27 - Test 1 Progress Report Dispatch

28 - Class Teacher's Meeting

A	Mon	Tue	Wed	Thu	Fri	Sat	Sun					
			1	2	3	4	5					
P	6	7	8	9	10	11	12					
R	13	14	15	16	17	18	19					
I	20	21	22	23	24	25	26					
L	27	28	29	30								
	Number of Working Days - 23											

6 - Mahaveera Jayanti

10 - Good Friday

14 - Dr. B R Ambedkar Jayanti

20, 21, 22 - Test 2

29 - Test 2 Progress Report Dispatch

30 - Class Teacher's Meeting

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
					1	2	3
M	4	5	6	7	8	9	10
A	11	12	13	14	15	16	17
Y	18	19	20	21	22	23	24
	25	26	27	28	29	30	31
		Numl	per of	Worki	no Dav	vs - 24	

1 - May Day

25 - Kutub A Ramzan

28, 29, 30 - Test 3

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
	1	2	3	4	5	6	7
J	8	9	10	11	12	13	14
UN	15	16	17	18	19	20	21
E	22	23	24	25	26	27	28
	29	30					
		Numl	per of	Worki	ng Day	ys - 12	

1-6 Lab Internals

8 - Test 3 Progress Report Dispatch

9 - Class Teacher's Meeting

10-Submission of IA and Attendance to ACU

13 - Last Working Day

BGSIT IS COMMITTED TO THE CAUSE OF CREATING TOMORROW'S ENGINEERS BY PROVIDING QUALITY EDUCATION INCULCATING ETHICAL VALUES.

Practical Examinations	15-6-2020 to 24-6-2020
Theory Examinations	HOD 25-6-2020 to 15-7-2020
Commencement of ODD Semester	Pre Engineering 3/8/2020

Dr. B.K.Raghavendra Academic Incharge BGS Institute of Technology Dr. B.K.Narendra
BG Nagara- 571448
Principal
Nagamangala Taluk, Mandya District.

" Jai Sri Gurudev "

B.G.S.Institute of Technology, B.G.Nagara-571448

Department of Pre - engineering

Time Table For Second Semester

PERIOD FROM: 10-FEB-2020 T0 14-JUNE-2020

Computer Science Engg.

Room No - 203

Day Time	9.00AM-9.55AM	9.55AM-10.50AM	11.00AM-11.55AM	11.55AM-12.50PM	
Monday	18CIV-24 (GR)	D1 (PHY	LAB (L) / D2 (ELEL) / D3 (C	CAED)	
Tuesday	18MAT-21 (CSM)	18PHY-22 (SRS)	18ELE-13 (SKJ)	18CIV-24 (GR)	EUNCH
Wednesday	18MAT-21 (CSM)	D2 (PH)	LAB 'L) / D3 (ELEL) / D1 (O	CAED)	
Thursday	18PHY-22 (SRS)	D3 (PH)	LAB 'L) / D1 (ELEL) / D2 (O	CAED)	BKEAK
Friday			HEORY ATH N		•
Saturday	18ELE-13 (SKJ)	18PHY-22 (SRS)	18CIV-24 (GR)	18MAT-21 (CSM)	

1.45PM-2.40PM	2.40PM-3.35PM	3.35PM-4.30PM
18MAT-21 (CSM)	18ELE-13 (SKJ)	
PLACEMEN	T TRAINING	
18CIV-24 (GR)	18PHY-22 (SRS)	
18ELE-13 (SKJ)	18MAT-21 (CSM)	18CIV-24 (GR)
18ELE-13 (SKJ)	18CIV-24 (GR)	18MAT-21 (CSM)

SI No	Subject Code	Subject Title	Staff Name
1	18MAT-21	Engineering Mathematics - II	Chaithra S M (CSM)
2	18PHY-22	Engineering Physics	Shankara S R(SRS)
3	18ELE-23	Basic Electrical Engineering	Goutham V (GV)
4	18CIV-24	Civil Engineeringg and Mechanics	Gomathi R (G R)
5	18CED-25	Computer Aided Engineering Drawing	Sharath N(SN)
6	18CHEL-26	Physics Laboratory	Shankara S R(SRS)
7	18ELEL-27	Electrical Laboratory	Goutham V (GV)

Shankara S R

Section-D

Verified by

Dr Yuvaraja B K
Dept. of Pre Engineering **BGS** Institute of Technology

B G Nagara- 571448

Nagamangala Taluk, Mandya District.

Principal

8

Dr Narendra B K
PRINCIPAL

B.G.S. INSTITUTE OF TECHNOLOG®

B.G. NAGAR - 571 448

" Jai Sri Gurudev "

B.G.S.Institute of Technology, B.G.Nagara-571448

Department of Pre - engineering

Time Table For Second Semester

Section-F

PERIOD FROM: 10-FEB-2020 T0 14-JUNE-2020

Civil

Room No - 306

Day Time	9.00AM-9.55AM	9.55AM-10.50AM	31.1E	11.00AM-11.55AM	11.55AM-12.50PM		1.45PM-2.40PM	2.40PM-3.35PM	3.35PM-4.30PM
Monday	18MAT-21 (BKY)	18ELE-23 (MKM)	>	18CIV-24 (UA)	18PHY-22 (SRS)		F1(PHY	LAB L) / F2 (ELEL) / F3	(CAED)
Tuesday	PLACEMENT TRAINING			18CIV-24 (UA)	18MAT-21 (BKY)	UNCH	LAB F2(PHYL) / F3 (ELEL) / F1 (CAI		(CAED)
Wednesday				IEORY H S (HSM)		H BRE	8.		-
Thursday	18MAT-21 (BKY)	18ELE-23 (MKM)	AK	18CIV-24 (UA)	18PHY-22 (SRS)	ŒAK	18CIV-24 (UA)	18ELE-23 (MKM)	18PHY-22 (SRS)
Friday	18ELE-23 (MKM)	LAB F3(PHYL) / F1 (ELEL) / F2 (CAED)					18PHY-22 (SRS)	18MAT-21 (BKY)	
Saturday	18MAT-21 (BKY)	18ELE-23 (MKM)		18CIV-24 (UA)	18PHY-22 (SRS)		18ELE-23 (MKM)	18CIV-24 (UA)	5

SI No	Subject Code	Subject Title	Staff Name
1	18MAT-21	Engineering Mathematics - II	Yuvaraja B K (BKY)
2	18PHY-22	Engineering Physics	Shankara S R (SRS)
3	18ELE-23	Basic Electrical Engineering	Mouna K M (MKM)
4	18CIV-24	Civil Engineeringg and Mechanics	Uma A (UA)
5	18CED-25	Computer Aided Engineering Drawing	Mahendra H S (HSM)
6	18CHEL-26	Physics Laboratory	Shankara S R (SRS)
7	18ELEL-27	Electrical Laboratory	Mouna K M (MKM)

Shankara'S R

Verifie (V)

Deptr Vivarej Engineering BGS Institute of Technology B G Nagara- 571448

Nagamangala Taluk, Mandya District.

Dr Narendra B K PRINCIPAL

B.G.S. INSTITUTE OF TECHNOLOGY

.B.G. NAGAR - 571 449

Semester	I/II	Course Title	Engineering Physics	Course Code	18PHY12/22
Teaching Period	50 Hours	L-T-P-TL	4-1-0-5	SEE	3 Hours
CIE	40 Marks	SEE	60 Marks	Total	100 Marks
		CREI	DITS - 04		20

COURSE OBJECTIVES:

This course will enable students to learn the basic concepts in Physics which are very much essential in understanding and solving engineering related challenges.

COURSE CONTENTS:

::MODULE - 1:: (10 Hours)

Oscillations and Waves:

Free Oscillations: Definition of SHM, derivation of equation for SHM, Mechanical simple harmonic oscillators (mass suspended to spring oscillator), complex notation and phasor representation of simple harmonic motion. Equation of motion for free oscillations, Natural frequency of oscillations.

Damped and forced oscillations: Theory of damped oscillations: over damping, critical & under damping, quality factor. Theory of forced oscillations and resonance, Sharpness of resonance. One example for mechanical resonance.

Shock waves: Mach number, Properties of Shock waves, control volume. Laws of conservation of mass, energy and momentum. Construction and working of Reddy shock tube, applications of shock waves. Numerical problems.

::MODULE - 2:: (10 Hours)

Elastic properties of materials:

Elasticity: concept of elasticity, plasticity, stress, strain, tensile stress, shear stress, compressive stress, strain hardening and strain softening, failure (fracture/fatigue), Hooke's law, different elastic moduli: Poisson's ratio, Expression for Young's modulus (Y), Bulk modulus (K) and Rigidity modulus (n) in terms of α and β . Relation between Y, n and K.

Bending of beams: Neutral surface and neutral plane, Derivation of expression for bending moment of a beam with circular and rectangular cross section. Single cantilever derivation of expression for Young's modulus.

Torsion of cylinder: Expression for couple per unit twist of a solid cylinder (Derivation), Torsional pendulum-Expression for period of oscillation. Numerical problems.

::MODULE - 3:: (10 Hours)

Crystal structure and Optical fibers:

Crystal structure: Space lattice, Bravais lattice—Unit cell, Primitive cell. Lattice parameters. Crystal systems. Direction and planes in a crystal. Miller indices. Expression for inter – planar spacing. Co-ordination number. Atomicpacking factors (SC,FCC,BCC). Bragg's law, Determination of crystal structure using Bragg's X–ray difractometer. Polymarphism and Allotropy. Crystal Structure of Diamond.

Optical fibers: Propagation mechanism, angle of acceptance. Numerical aperture. Modes of propagation and Types of optical fibers. Attenuation: Causes of attenuation and Mention of expression for attenuation coefficient, Discussion of block diagram of point to point communication. Applications. Numerical problems.

::MODULE - 4:: (10 Hours)

Quantum Mechanics and Lasers:

Quantum Mechanics: Introduction to Quantum mechanics, Wave nature of particles, Heisenberg's uncertainty principle and applications (non confinement of electron in the nucleus), Schrodinger time independent wave equation, Significance of Wave function, Normalization, Particle in a box, Energy eigen values of a particle in a box and probability densities.

Lasers: Review of spontaneous and stimulated processes, Einstein's coefficients (Derivation of expression for energy density). Requisites of a Laser system. Conditions for laser action. Principle, Construction and working of CO₂ and semiconductor Lasers. Application of Lasers in Defense (Laser range finder), Engineering (Data storage).

Numerical problems.

::MODULE - 5:: (10 Hours)

Material Science:

Quantum Free electron theory of metals: Review of classical free electron theory, mention of failures. Assumptions of Quantum Free electron theory, Mention of Expression for density of states, Fermi-Dirac statistics (qualitative), Fermi factor, Fermi level, Derivation of the expression for Fermi energy, Success of OFET.

Physics of Semiconductor: Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band, Hole concentration in valance band (Mention the expression), Conductivity of semiconductors(Derivation).

Dielectric materials: Polar and non-polar dielectrics, internal fields in a solid, Clausius - Mossotti equation, (Derivation), mention of solid, liquid and gaseous dielectrics with one example each. Numerical problems.

COURSE OUTCOMES:

Upon completion of this course, students will be able to

- 1. Memorize the setup of differential equations for the types of oscillations and analyze the solutions and also to recognize the importance of shock waves and their applications.
- 2. Describe the Elastic properties and Electrical properties of the materials and identify their applications in Engineering.
- 3. Study of Crystal structure and applications are to boost the technical skills and its applications.
- 4. Explain the principle, conditions, requisites and generation of laser and its different applications mainly optical fiber communication through the study of construction, working and types of optical fibers
- 5. Realize the various electrical and thermal properties of materials like conductors, semiconductors and dielectrics using different theoretical models.

RECOMMENDED LEARNING RESOURCES:

Text Books:

- 1. MN Avadhanulu and PG Kshirsagar, "A Text book of Engineering Physics", 10th revised Ed, S. Chand and Company Ltd, New Delhi.
- 2. Arthur Beiser, "Concepts of Modern Physics", 6th Ed., Tata McGraw Hill Edu Pvt Ltd, New Delhi, 2006.
- 3. BB Laud, "Lasers and Non-Linear Optics", 3rd Ed., New Age International Publishers, 2011.
- 4. Gaur and Gupta, "Engineering Physics", Dhanpat Rai Publications, 2017.

Reference Books:

- 1. M. K. Verma, "Introduction to Mechanics", 2nd Ed., University Press (India) Pvt. Ltd., Hyderabad, 2009.
- 2. O. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010.
- 3. B. G. Streetman, "Solid State Electronic Devices", Prentice Hall of India, 1995.
- 4. MK Harbola, "Engineering Mechanics", 2nd Ed., Cengage publications, New Delhi, 2009.
- 5. Chintoo S. Kumar, K. Takayama and K. P. J. Reddy, "Shock Waves made simple", Wiley India Pvt. Ltd., New Delhi, 2014.
- 6. David Griffiths, "Introduction to Electrodynamics", 4th Ed., Cambridge University Press, 2017,

HOD
Dept. of Pre Engineering
BGS Institute of Technology
B G Nagara- 571448
Nagamangata Tarak, Mandya District.

mesus

Planka

Semester	I/II	Course Title	Engineering Physics Lab	Course Code	18PHYL16/2 6		
Teaching Period	42 Hours	L-T-P- TL	0-0-3-3	SEE	3 Hours		
CIE	40 Marks	SEE	60 Marks	Total	100 Marks		
CREDITS – 02							

COURSE OBJECTIVES:

- To realize experimentally, the mechanical, electrical and thermal properties of materials, concept of waves and oscillations.
- Design simple circuits and hence study the characteristics of semiconductor devices.

COURSE CONTENTS:

- 1. Determination of spring constants in Series and Parallel combinations.
- 2. n & I by Torsional pendulum.
- 3. Single Cantilever Experiment.
- 4. Radius of curvature of plano convex lens using Newton's rings.
- 5. LCR Resonance (Series and Parallel).
- 6. Study of Zener diode characteristics.
- 7. Acceptance angle and Numerical aperture of an optical fiber.
- 8. Wavelength of semiconductor laser using Laser diffraction.
- 9. Estimation of Fermi Energy of Copper.
- 10. Study of Transistor characteristics.
- 11. Study of Photodiode characteristics.
- 12. Calculation of Dielectric constant by RC charging and discharging.

COURSE OUTCOMES:

Upon completion of this course, students will be able to:

- 1. **Demonstrate** the phenomenon of interference and diffraction using simple experiments.
- 2. **Interpret** the characteristics of bipolar junction transistors and photo-diode and also to **Analyze** the resonance concept and its applications in electrical circuits.
- 3. **Determine** the strength of the given elastic materials using bending and torsion methods and also the force constant of springs.
- 4. **Calculate** the electrical properties like Dielectric Constant of the Dielectric material, Fermi energy of a metal through simple experiments and **Compare** the theoretical and experimental values.
- 5. **Visualize** laser source and application of laser in the optical fiber and diffraction experiments to **calculate** the related quantities.
- 6. **Practice** the measurement of quantities, honest recording, representing and analyzing the data and expressing the final results.

CONDUCTION OF PRACTICAL EXAMINATION:

- 10 experiments are mandatory. Student has to perform two experiments in the SEE.
- Remaining two experiments must be introduced as compulsory demo experiment.

Decelous

HOD

Dept. of Pre Engineering

BGS Institute of Technology

B G Nagara- 571448

Nagamangala Taiuk, Manuya District.

BGS Institute of Technology

Mandya

COURSE BOOK

Period of the Semester: From

10 Feb 2020

To

31 Jul 2020

Dept-Sem-Sec: PHY-2-D

Subject with Code: ENGINEERING PHYSICS

18PHY22

Time Slot

MON:

TUE: 09:55 - 10:50

WED: 14:40 - 15:35

THU: 09:00 - 09:55

FRI:

SAT: 09:55 - 10:50

Name of the Teacher: Mr Shankar S R

		Planned	2	Execution			
Period	Date	Topic	Source material to be referred	Date	Торіс	Source material to be referred	
Module 1				75)		•	
1	11 Feb 2020	Definition of SHM, derivation of equation for SHM		11 Feb 2020	Definition of SHM, derivation of equation for SHM		
2	12 Feb 2020	Mechanical simple harmonic oscillators (mass suspended to spring oscillator)		12 Feb 2020	Mechanical simple harmonic oscillators (mass suspended to spring oscillator)		
3	13 Feb 2020	Equation of motion for free oscillations		13 Feb 2020	Equation of motion for free oscillations		
4	15 Feb 2020	Natural frequency of oscillations.		15 Feb 2020	Natural frequency of oscillations.		
5	18 Feb 2020	Theory of damped oscillations: over damping, critical & under damping		18 Feb 2020	Theory of damped oscillations: over damping, critical & under damping		
6	19 Feb 2020	quality factor, Theory of forced oscillations and resonance		19 Feb 2020	quality factor, Theory of forced oscillations and resonance		
7	20 Feb 2020	Sharpness of resonance, One example for mechanical resonance.		20 Feb 2020	Sharpness of resonance, One example for mechanical resonance.		
8	22 Feb 2020	Mach number, Properties of Shock waves, control volume		22 Feb 2020	Mach number, Properties of Shock waves, control volume		
9	25 Feb 2020	Laws of conservation of mass, energy and momentum, Construction and working of Reddy shock tube		25 Feb 2020	Laws of conservation of mass, energy and momentum, Construction and working of Reddy shock tube		
10	26 Feb 2020	applications of shock waves, Numerical problems.		26 Feb 2020	applications of shock waves, Numerical problems.		
Module 2	3		(6)		÷		
11	27 Feb 2020	concept of elasticity plasticity, stress strain tensile stress, shear stress		27 Feb 2020	concept of elasticity plasticity, stress strain tensile stress, shear stress	н	
12	29 Feb 2020	compressive stress, Hooke 's law		29 Feb 2020	compressive stress, Hooke 's law		
13	3 Mar 2020	different elastic moduli: Poisson 's ratio, Expression for Young 's modulus (Y)		3 Mar 2020	different elastic moduli: Poisson 's ratio, Expression for Young 's modulus (Y)		

		Planned			Execution	
Period	Date	Topic	Source material to be referred	Date	Topic	Source material to be referred
14	4 Mar 2020	Bulk modulus (K) and Rigidity modulus (n) in terms of • and •, Relation between Y n and K.		4 Mar 2020	Bulk modulus (K) and Rigidity modulus (n) in terms of • and •, Relation between Y n and K.	n.
15	5 Mar 2020	Neutral surface and neutral plane		5 Mar 2020	Neutral surface and neutral plane	
16	7 Mar 2020	Derivation of expression for bending moment of a beam with circular and rectangular cross section		7 Mar 2020	Derivation of expression for bending moment of a beam with circular and rectangular cross section	
17	10 Mar 2020	Single cantilever derivation of expression for Young 's modulus.		10 Mar 2020	Single cantilever derivation of expression for Young 's modulus.	
18	11 Mar 2020	Expression for couple per unit twist of a solid cylinder (without derivation)		11 Mar 2020	Expression for couple per unit twist of a solid cylinder (without derivation)	
19	12 Mar 2020	Torsional pendulum-Expression for period of oscillation		12 Mar 2020	Torsional pendulum-Expression for period of oscillation	
20	14 Mar 2020	Numerical problems.		14 Mar 2020	Numerical problems.	5.
Module 3				•		
21	17 Mar 2020	Space lattice, Bravais lattice –Unit cell, Primitive cell		17 Mar 2020	Space lattice, Bravais lattice –Unit cell, Primitive cell	
22	18 Mar 2020	Lattice parameters, Crystal systems, Direction and planes in a crystal		18 Mar 2020	Lattice parameters, Crystal systems, Direction and planes in a crystal	
23	24 Mar 2020	Miller indices, Expression for inter – planar spacing, Co-ordination number		24 Mar 2020	Miller indices, Expression for inter – planar spacing, Co-ordination number	
24	26 Mar 2020	Atomic packing factors (SC,FCC,BCC)		26 Mar 2020	Atomic packing factors (SC, FCC, BCC)	
25	28 Mar 2020	Bragg 's law, Determination of crystal structure using Bragg 's X –ray difractometer.		28 Mar 2020	Bragg 's law, Determination of crystal structure using Bragg 's X –ray difractometer.	es es

		Planned	12		Execution	
Period	Date	Topic	Source material to be referred	Date	Topic	Source material to be referred
26	31 Mar 2020	Propagation mechanism, angle of acceptance		31 Mar 2020	Propagation mechanism, angle of acceptance	
27	1 Apr 2020	Numerical aperture, Modes of propagation and Types of optical fibers	2	1 Apr 2020	Numerical aperture, Modes of propagation and Types of optical fibers	
28	2 Apr 2020	Attenuation: Causes of attenuation and Mention of expression for attenuation coefficient, Discussion of block diagram of point to point communication		2 Apr 2020	Attenuation: Causes of attenuation and Mention of expression for attenuation coefficient, Discussion of block diagram of point to point communication	u
29	4 Apr 2020	Applications		4 Apr 2020	Applications	
30	7 Apr 2020	Numerical problems .		7 Apr 2020	Numerical problems .	
Module 4	24				•	
31	23 Apr 2020	Introduction to Quantum mechanics, Wave nature of particles		23 Apr 2020	Introduction to Quantum mechanics, Wave nature of particles	
32	25 Apr 2020	Heisenberg 's uncertainty principle and applications (non confinement of electron in the nucleus), Schrodinger time independent wave equation		25 Apr 2020	Heisenberg 's uncertainty principle and applications (non confinement of electron in the nucleus), Schrodinger time independent wave equation	
33	28 Apr 2020	Significance of Wave function, Normalization		28 Apr 2020	Significance of Wave function, Normalization	
34	29 Apr 2020	Particle in a box		29 Apr 2020	Particle in a box	
35	30 Apr 2020	Energy eigen values of a particle in a box and probability densities.	1	30 Apr 2020	Energy eigen values of a particle in a box and probability densities.	
36	2 May 2020	Review of spontaneous and stimulated processes, Einstein 's coefficients (Derivation of expression for energy density)		2 May 2020	Review of spontaneous and stimulated processes, Einstein 's coefficients (Derivation of expression for energy density)	

		Planned	8		Execution	
Period	Date	Торіс	Source material to be referred	Date	Topic	Source material to be referred
37	5 May 2020	Requisites of a Laser system, Conditions for laser action		5 May 2020	Requisites of a Laser system, Conditions for laser action	
38	5 May 2020	Principle, Construction and working of CO2 and semiconductor Lasers	=	5 May 2020	Principle, Construction and working of CO2 and semiconductor Lasers	
39	5 May 2020	Application of Lasers in industrial field	13	5 May 2020	Application of Lasers in industrial field	
40	5 May 2020	Numerical problems	59	5 May 2020	Numerical problems	
Module 5				•		
41	6 May 2020	Review of classical free electron theory, mention of failures		6 May 2020	Review of classical free electron theory, mention of failures	
42	7 May 2020	Assumptions of Quantum Free electron theory, Mention of Expression for density of states		7 May 2020	Assumptions of Quantum Free electron theory, Mention of Expression for density of states	
43	9 May 2020	Fermi-Dirac statistics (qualitative), Fermi factor		9 May 2020	Fermi-Dirac statistics (qualitative), Fermi factor	
44	12 May 2020	Fermi level, Derivation of the expression for Fermi energy		12 May 2020	Fermi level, Derivation of the expression for Fermi energy	
45	13 May 2020	Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band		13 May 2020	Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band	
46	14 May 2020	Hole concentration in valance band (Mention the expression)		14 May 2020	Hole concentration in valance band (Mention the expression)	
47	16 May 2020	Conductivity of semiconductors (Derivation)		16 May 2020	Conductivity of semiconductors (Derivation)	
48	19 May 2020	Polar and non-polar dielectrics, internal fields in a solid	80	19 May 2020	Polar and non-polar dielectrics, internal fields in a solid	
49	20 May 2020	Clausius - Mossotti equation, (Derivation) mention of solid		20 May 2020	Clausius - Mossotti equation, (Derivation) mention of solid	

		Planned	s	Execution		
Period	Date	Торіс	Source material to be referred	Date	Topic	Source material to be referred
50		liquid and gaseous dielectrics with one example each, Numerical problems	2		liquid and gaseous dielectrics with one example each, Numerical problems	

Module No.	# of Classes Planned(till date)	Planned Effort(till date)	# of Classes Executed(till date)	Actual Effort (till date)	% Coverage
2	10	9hrs 10min	10	9hrs 10min	100.0
3	10	9hrs 10min	10	9hrs 10min	100.0
4	10	9hrs 10min	10	9hrs 10min	100.0
5	10	9hrs 10min	10	9hrs 10min	100.0
1	10	9hrs 10min	10	9hrs 10min	100.0

Signature of Principal (&remark if any)
Principal

BGS Institute of Technology B G Nagara - 571448,

Nagamangala Tq, Mandya Dist.

edun

HOD's Signature

HOD

Dept. of Pre Engineering BGS Institute of Technology B G Nagara- 571448

Nagamangala Taiuk, Mandya District

BGS Institute of Technology

Mandya

COURSE BOOK

Period of the Semester: From

10 Feb 2020

To

31 Jul 2020

Dept-Sem-Sec: PHY-2-F

Subject with Code: ENGINEERING PHYSICS

18PHY22

Time Slot

MON: 11:55 - 12:50

TUE:

WED:

THU: 11:55 - 12:50

FRI: 13:45 - 14:40

SAT: 11:55 - 12:50

Name of the Teacher: Mr Shankar S R

	100	Planned	42 25		Execution	
Period	Date	Topic	Source material to be referred	Date	Topic	Source material to be referred
Module 1			e		•	
1	13 Feb 2020	Definition of SHM, derivation of equation for SHM	12	13 Feb 2020	Definition of SHM, derivation of equation for SHM	
2	14 Feb 2020	Mechanical simple harmonic oscillators (mass suspended to spring oscillator)		14 Feb 2020	Mechanical simple harmonic oscillators (mass suspended to spring oscillator)	
3	15 Feb 2020	Equation of motion for free oscillations		15 Feb 2020	Equation of motion for free oscillations	
4	17 Feb 2020	Natural frequency of oscillations.		17 Feb 2020	Natural frequency of oscillations.	
5	20 Feb 2020	Theory of damped oscillations: over damping, critical & under damping		20 Feb 2020	Theory of damped oscillations: over damping, critical & under damping	
6	22 Feb 2020	quality factor, Theory of forced oscillations and resonance		22 Feb 2020	quality factor, Theory of forced oscillations and resonance	
7	24 Feb 2020	Sharpness of resonance, One example for mechanical resonance.	21	24 Feb 2020	Sharpness of resonance, One example for mechanical resonance.	
8	24 Feb 2020	Mach number, Properties of Shock waves, control volume		24 Feb 2020	Mach number, Properties of Shock waves, control volume	23
9	24 Feb 2020	Laws of conservation of mass, energy and momentum, Construction and working of Reddy shock tube	15	24 Feb 2020	Laws of conservation of mass, energy and momentum, Construction and working of Reddy shock tube	
10	24 Feb 2020	applications of shock waves, Numerical problems.		24 Feb 2020	applications of shock waves, Numerical problems.	
Module 2		2				
11	27 Feb 2020	concept of elasticity plasticity, stress strain tensile stress, shear stress		27 Feb 2020	concept of elasticity plasticity, stress strain tensile stress, shear stress	
12	28 Feb 2020	compressive stress, Hooke 's law		28 Feb 2020	compressive stress, Hooke 's law	
13	29 Feb 2020	different elastic moduli: Poisson 's ratio, Expression for Young 's modulus (Y)		29 Feb 2020	different elastic moduli: Poisson 's ratio, Expression for Young 's modulus (Y)	

		Planned	5		Execution	
Period	Date	Topic	Source material to be referred	Date	Topic	Source material to be referred
14	2 Mar 2020	Bulk modulus (K) and Rigidity modulus (n) in terms of • and •, Relation between Y n and K.		2 Mar 2020	Bulk modulus (K) and Rigidity modulus (n) in terms of • and •, Relation between Y n and K.	
15	5 Mar 2020	Neutral surface and neutral plane		5 Mar 2020	Neutral surface and neutral plane	
16	6 Mar 2020	Derivation of expression for bending moment of a beam with circular and rectangular cross section	×	6 Mar 2020	Derivation of expression for bending moment of a beam with circular and rectangular cross section	
17	7 Mar 2020	Single cantilever derivation of expression for Young 's modulus.		7 Mar 2020	Single cantilever derivation of expression for Young 's modulus.	
18	9 Mar 2020	Expression for couple per unit twist of a solid cylinder (without derivation)		9 Mar 2020	Expression for couple per unit twist of a solid cylinder (without derivation)	
19	12 Mar 2020	Torsional pendulum-Expression for period of oscillation		12 Mar 2020	Torsional pendulum-Expression for period of oscillation	
20	13 Mar 2020	Numerical problems.		13 Mar 2020	Numerical problems.	5
Module 3			***************************************			
21	16 Mar 2020	Space lattice, Bravais lattice –Unit cell, Primitive cell		16 Mar 2020	Space lattice, Bravais lattice –Unit cell, Primitive cell	
22	23 Mar 2020	Lattice parameters, Crystal systems, Direction and planes in a crystal		23 Mar 2020	Lattice parameters, Crystal systems, Direction and planes in a crystal	
23	26 Mar 2020	Miller indices, Expression for inter – planar spacing, Co-ordination number	0	26 Mar 2020	Miller indices, Expression for inter – planar spacing, Co-ordination number	
24	27 Mar 2020	Atomic packing factors (SC,FCC,BCC)		27 Mar 2020	Atomic packing factors (SC, FCC, BCC)	
25	28 Mar 2020	Bragg 's law, Determination of crystal structure using Bragg 's X –ray difractometer.		28 Mar 2020	Bragg 's law, Determination of crystal structure using Bragg 's X –ray difractometer.	

	2	Planned	200 11 137		Execution	
Period	Date	Торіс	Source material to be referred	Date	Торіс	Source material to be referred
26	30 Mar 2020	Propagation mechanism, angle of acceptance	2 2 3	30 Mar 2020	Propagation mechanism, angle of acceptance	
27	2 Apr 2020	Numerical aperture, Modes of propagation and Types of optical fibers		2 Apr 2020	Numerical aperture, Modes of propagation and Types of optical fibers	
28	3 Apr 2020	Attenuation: Causes of attenuation and Mention of expression for attenuation coefficient, Discussion of block diagram of point to point communication		3 Apr 2020	Attenuation: Causes of attenuation and Mention of expression for attenuation coefficient, Discussion of block diagram of point to point communication	45
29	4 Apr 2020	Applications		4 Apr 2020	Applications	
30	9 Apr 2020	Numerical problems .		9 Apr 2020	Numerical problems .	
Module 4						
31	23 Apr 2020	Introduction to Quantum mechanics, Wave nature of particles		23 Apr 2020	Introduction to Quantum mechanics, Wave nature of particles	
32	24 Apr 2020	Heisenberg 's uncertainty principle and applications (non confinement of electron in the nucleus), Schrodinger time independent wave equation		24 Apr 2020	Heisenberg 's uncertainty principle and applications (non confinement of electron in the nucleus), Schrodinger time independent wave equation	
33	25 Apr 2020	Significance of Wave function, Normalization		25 Apr 2020	Significance of Wave function, Normalization	
34	27 Apr 2020	Particle in a box		27 Apr 2020	Particle in a box	
35	30 Apr 2020	Energy eigen values of a particle in a box and probability densities.		30 Apr 2020	Energy eigen values of a particle in a box and probability densities.	8
36	2 May 2020	Review of spontaneous and stimulated processes, Einstein 's coefficients (Derivation of expression for energy density)		2 May 2020	Review of spontaneous and stimulated processes, Einstein 's coefficients (Derivation of expression for energy density)	

		Planned			Execution	
Period	Date	Topic	Source material to be referred	Date	Торіс	Source material to be referred
37	4 May 2020	Requisites of a Laser system, Conditions for laser action		4 May 2020	Requisites of a Laser system, Conditions for laser action	
38	4 May 2020	Principle, Construction and working of CO2 and semiconductor Lasers		4 May 2020	Principle, Construction and working of CO2 and semiconductor Lasers	
39	4 May 2020	Application of Lasers in industrial field	41	4 May 2020	Application of Lasers in industrial field	
40	4 May 2020	Numerical problems		4 May 2020	Numerical problems	
Module 5		•			9	•
41	7 May 2020	Review of classical free electron theory, mention of failures		7 May 2020	Review of classical free electron theory, mention of failures	
42	8 May 2020	Assumptions of Quantum Free electron theory, Mention of Expression for density of states		8 May 2020	Assumptions of Quantum Free electron theory, Mention of Expression for density of states	
43	9 May 2020	Fermi-Dirac statistics (qualitative), Fermi factor	29	9 May 2020	Fermi-Dirac statistics (qualitative), Fermi factor	
44	11 May 2020	Fermi level, Derivation of the expression for Fermi energy		11 May 2020	Fermi level, Derivation of the expression for Fermi energy	
45	14 May 2020	Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band		14 May 2020	Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band	
46	15 May 2020	Hole concentration in valance band (Mention the expression)		15 May 2020	Hole concentration in valance band (Mention the expression)	
47	16 May 2020	Conductivity of semiconductors (Derivation)		16 May 2020	Conductivity of semiconductors (Derivation)	
48	18 May 2020	Polar and non-polar dielectrics, internal fields in a solid		18 May 2020	Polar and non-polar dielectrics, internal fields in a solid	
49	21 May 2020	Clausius - Mossotti equation, (Derivation) mention of solid		21 May 2020	Clausius - Mossotti equation, (Derivation) mention of solid	

18 2 2		Planned			Execution	
Period	Date	Торіс	Source material to be referred	Date	Торіс	Source material to be referred
50		liquid and gaseous dielectrics with one example each, Numerical problems		22 May 2020	liquid and gaseous dielectrics with one example each, Numerical problems	REF 1 REF 2 REF 3 REF 4 REF 5 REF 6

Module # of Classes				
No. Planned(till date) 1 10	Planned Effort(till date) 9hrs 10min	# of Classes Executed(till date)	Actual Effort (till date)	% Coverage
2 10	9hrs 10min	10	9hrs 10min	100.0
10	9hrs 10min	10	9hrs 10min	100.0
10	9hrs 10min	10	9hrs 10min 9hrs 10min	100.0 100.0
Placlaco	9hrs 10min	10	9hrs 10min	100.0

Signature of Principal (&remark if any)
Principal

BGS Institute of Technology B G Nagara - 571448,

Nagamangala Tq, Mandya Dist.

HOD's Signature HOD

Dept. of Pre Engineering BGS Institute of Technology

B G Nagara- 571448

Nagamangala Tajuk, Mandya District.

|| Jai Sri Gurudev ||

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

CO-PO & CO-PSO mapping (18 Scheme)

Programme	Course	Subject	Credits	L-T-P-	Asse	ssment	Exam
	Code			TL	SEE	CIA	Duration
B.E	18PHY12 /22	Engineering Physics	04	4-1-0-5	60	40	3Hrs

Co's

18C102.1	Memorize the setup of differential equations for the types of oscillations and analyze the solutions and also to recognize the importance of shock waves and their applications.
18C102.2	Describe the Elastic properties and Electrical properties of the materials and identify their applications in Engineering.
18C102.3	Study of Crystal structure and applications are to boost the technical skills and Its applications.
18C102.4	Explain the principle, conditions, requisites and generation of laser and its different applications mainly optical fiber communication through the study of construction, working and types of optical fibers.
18C102.5	Realize the various electrical and thermal properties of materials like conductors, semiconductors and dielectrics using different theoretical models.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
17C102.1	3	2												
17C102.2	2	2	1											
17C102.3	3	2							(4					
17C102.4	3	2												
17C102.5	3	2												
AVG	2.8	2	1											

Note: 3 =Strong Contribution 2 =Average Contribution

1 = Weak Contribution

Course Coordinator

junedes 3h HOD

HOD

Dept. of Pre Engineering **BGS** Institute of Technology

B G Nugara S

Nagamana laida. viant

|| Jai Sri Gurudev ||

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

CO-PO & CO-PSO mapping (18 Scheme)

Programme	Course	Subject	Credits	L-T-P-	Asses	ssment	Exam
	Code			TL	SEE	CIA	Duration
B.E	18PHY16 /26	Engineering Physics Lab	02	0-0-3-3	60	40	3Hrs

Co's

18C102.1	Demonstrate the phenomenon of interference and diffraction using simple experiments.
18C102.2	Interpret the characteristics of bipolar junction transistors and photo-diode and also to Analyze the resonance concept and its applications in electrical circuits.
18C102.3	Determine the strength of the given elastic materials using bending and torsion methods and also the force constant of springs.
18C102.4	Calculate the electrical properties like Dielectric Constant of the Dielectric material, Fermi energy of a metal through simple experiments and Compare the theoretical and experimental values.
18C102.5	Visualize laser source and application of laser in the optical fiber and diffraction experiments to calculate the related quantities.
18C102.6	Practice the measurement of quantities, honest recording, representing and analyzing the data and expressing the final results.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
17C102.1	3	1							1					
17C102.2	3	1							1					
17C102.3	3	1							1					
17C102.4	3	1							1					
17C102.5	3	1							1					
17C102.6	3	2	1		1	1			1					
AVG	3	1.17	1		1	1			1					

Note: 3 =Strong Contribution 2 =Average Contribution

1 = Weak Contribution

HOD

HOD

Dept. of Pre Engineering BGS Institute of Technology

B G Nagara- 571465

Nagamangala ratuk, Mandya District.

|| Jai Sri Gurudev ||

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

LABORATORY RUBRICS

Programme	Course	Subject	Credits	L-T-	Asse	essment	Exam
	Code			P-TL	SEE	CIA	Duration
B.E	18PHY16/26	Engineering Physics Lab	02	0-0-3-	60	40	3Hrs

Maximum Marks: 40

Continuous Internal Evaluation	Excellent (80%-100%)	Good (80%-60%)	Average (40%-50%)
a. Observation write up and punctuality (05)	Students should write the experiments in the Observation book neatly and attend the labs regularly	Students should write the experiments in the Observation book and attend the labs.	Improper maintenance of observation books and being irregular to the labs.
b. Conduction of experiment and output (10)	Students should conduct the experiments following the given procedure, plot the graph, perform calculation and show the accurate results with S.I unit.	Students should conduct the experiments following the given procedure, plot the graph and perform calculation with average results.	Improper conduction of experiments, graph plotting and results without S.I. unit.
c. Viva vo ce (05)	They should answer all the questions.	If they answer some of the questions.	If they doesn't answer the questions.
d. Record write up (10)	They should write records neatly, legibly and with suitable circuit diagrams.	They should write records with suitable circuit diagrams.	Improper/poor maintenance of record.
e. Internal Test (10)	Students should write the given experiments containing Formula, Tabular column, Nature of the graph, conduct the experiment and show the results with S.I. unit.	Students must write the given experiments, conduct the experiment and show the results.	If the student write the experiment but fails to conduct it.

concret ste

HOD

Dept. of Pre Engineering BGS Institute of Technology B G Nagara- 571448

Nagamangala Taluk, Mandya District.

I - Sem 2019 Batch

18PHY12/22

First Semester BE Degree Examination January 2020 (CBCS Scheme)

Time: 3 Hours

Max Marks: 100 marks

Sub: Engineering Physics

Q P Code: 60003/60013

Instructions: 1. Answer **five full** questions.

- 2. Choose one full question from each module.
- 3. Your answer should be specific to the questions asked.
- 4. Write the same question numbers as they appear in this question paper.

5. Write Legibly Module - 1 Define SHM and mention any two examples. Derive the differential equation for SHM using 8 marks Hooke's law. b With neat diagram, explain the construction and working of Reddy's shock tube. 8 marks A car has a spring system that supports the in-built mass 1000 kg. When a person with a 4 marks weight 980 N sits at the C of G, the spring system sinks by 2.8 cm. When the car hits a bump, it starts oscillating vertically. Find the period and frequency of oscillation a Explain the basics laws of conservation of mass, energy and momentum. 2 6 marks b What are forced oscillations? Derive the expressions for amplitude of forced oscillations. 10 marks A mass of 2 kg suspended by a spring of force constant 51.26 N/m is executing damped 4 marks simple harmonic oscillations with a damping of 5 kg/s. Identify whether it is the case of under damping or of over damping required for the oscillations to be critically damped (Ignore the mass of the spring). Module – 2 8 marks

- State and explain Hooke's law. Explain the nature of elasticity with the help of stress-strain diagram.
 - b Define bending moment. Derive the expression for bending moment in terms of moment of 8 marks inertia.
 - Calculate the extension produced in a wire of length 2 m and radius 0.013 x 10⁻² m due to a force of 14.7 N applied along its length. Given, Young's modulus of the material of the 4 marks wire, $Y = 2.1 \times 10^{11} \text{ N/m}^2$

Or

a Define Young's modulus, Bulk modulus and Rigidity modulus.

8 marks

- b Define Single Cantilever. Derive the expression for young's modulus of the material of single cantilever for rectangular cross section.
- 8 marks
- Calculate the torque required to twist a wire of length 1.5 m, radius 0.0425x10⁻² m, through an angle ($\pi/45$) radian, if the value of rigidity modulus of its material is 8.3 x 10^{10} N/m².

4 marks

PTO

Module - 3

Define Lattice, Space lattice and Unit cell. Explain the seven crystal systems. 10 marks 5 Explain the different types of Optical fibers with neat diagram. 6 marks Find the interplanar spacing for a crystal having a wavelength of 0.7 Å for the second order 4 marks diffraction glancing at an angle of 10°. Or Define APF. Find the APF for SCC, BCC and FCC lattice. 10 marks Derive the expression for Numerical aperture in terms of R.I. of core and cladding material 6 marks of optical fiber. Calculate the numerical aperture and acceptance angle for a fiber with core and cladding of 4 marks refractive index 1.50 and 1.45 respectively. Module - 4 Obtain the expression for time independent Schrodinger wave equation in one dimensional 6 marks Explain the construction and working of CO₂ LASER with the help of energy level 10 marks diagram. An electron is bound in an One-dimensional potential well of infinite height and width of 4 marks 1 A. Calculate its energy values in the ground state and also in the first two excited states. State and explain Heisenberg's uncertainty principle. Show that electrons do not exist inside 8 marks 8 the nucleus of an atom. b Derive the expression for energy density of radiation at equilibrium condition in terms of 8 marks Einstein's coefficients. Find the ratio of population of the two energy levels in a medium in thermal equilibrium if 4 marks the transition between them produces light of wavelength 694.3nm. Assume the ambient temperature as 27°C. Module - 5 Define Fermi energy and Fermi factor. Discuss the probability of occupation of various 10 mark 9 energy states at high and low temperatures. Derive the expression for electrical conductivity of intrinsic semiconductor. 6 marks The charge carrier density of intrinsic germanium is 2.372x10⁻¹⁹/m³. Assuming electron and 4 marks hole mobility's as 3.38m²V⁻¹s⁻¹ and 0.18 m²V⁻¹s⁻¹ respectively, calculate the resistivity of intrinsic germanium at 27°C. Write the assumption of Quantum free electron theory. Derive the expression for Fermi 8 marks energy at 0° K. What are dielectrics and internal field. Derive Clausius-Mossotti equation. 8 marks If a NaCl crystal is subjected to an electric field of 1000 V/m and the resulting polarization 4 marks is 4.3×10^{-9} C/m², calculate the dielectric constant of NaCl.

DEPARTMENT: PHYSICS

Scheme & Solution

Semester: First

Subject Title: Engineering Physics

Subject Code: 18PHY-12

Module - 1 Solution 1. a) Definition of S. H. M> 02 Two Examples -> 1+1 Explanation with thooker law -> 02 F=-kx -> 01 dre + k x=0 @ dre + w.x=0 > 01 dre + k x=0 @ dre + w.x=0 > 04 Explanation for working of Reddy > 04 Shock tube. 3 x=0.028 m, Mass of car (m) = 1000 kg 1 x=0.028 m, Mass of car (m) = 1000 kg
Two Examples -> 1+1 Explanation with Hooke's law -> 02 F=-kx -> 01 dre + k .x =0 @ dre + w. x=0 > 01 dt - with explanation for construction > 04 Explanation for working of Reddy > 04 shock tube. (88) c) 2 = 0.028 m, Mass of car (m) = 1000 kg
$\frac{d^{3}e}{dt^{2}} + \frac{k}{m} \cdot x = 0 \text{ and } \frac{d^{3}e}{dt^{2}} + w^{3} \cdot x = 0 \text{ or } \frac{d^{3}e}{dt^{2}} + w^{3}$
$\frac{d^{3}e}{dt^{2}} + \frac{k}{m} \cdot x = 0 \text{ and } \frac{d^{3}e}{dt^{2}} + w^{3} \cdot x = 0 \text{ or } \frac{d^{3}e}{dt^{2}} + w^{3}$
B) Fig with explanation for construction > 04 Explanation for working of Reddy > 04 shock tube. (08)
B) Fig with explanation for construction > 04 Explanation for working of Reddy > 04 shock tube. (08)
Explanation for working of Reddy = 04 shock tube. (08) 2 = 0.028 m, Mass of car (m) = 1000 kg
2 = 0.028 m, Mars of car (m) = 1000 kg
2 = 0.028 m, Mars of car (m) = 1000 kg
C) 2 = 0.028 m, Mars of Car (m) = 1000 mg
10 10 10 10 10 10 10 10 10 10 10 10 10 1
Personie weight, W=980N T=?
$T = ?$ $F = kx = 7k = \frac{980}{0.028} = 3.5 \times 10^{4} \text{ m} \cdot 01$
$F=m.g=$ Person's mass $(m)=\frac{F}{g}(-)$ 01
$m = \frac{980}{9.8} = 100 \text{ kg}$
Total mass = 1000 + 100 = 1100 kg
$T = 2\pi x \sqrt{\frac{m}{k}} = 2x3.14x \frac{1100}{3.5x10} = 1.112e$
\sqrt{k} $\sqrt{8.5}$ $\sqrt{8.5}$ $\sqrt{60}$
$f = \frac{1}{1} = \frac{1}{1.11} = 0.9 + 3$
(os)
2. a) statement with equit each one carrier two marks -> 2+2+2
Carrier two marks -> 2+2+2
= 06

Question Number	Solution	Marks Allocated
P	Definition of forced oscillations ->	02,
	Resultant force = -r. dx - kx + Fsinot	01
	Regultant force = m. den ->	01
20 6-	upto d2 + 2b. dx + w? x = F. ∈(pt) =	02
30 6-	General solin equit, x = a sin (pt-x)	01
10 (6	From dx = a. f. Gos (ft-x) tog	0.7
1000	$a = \frac{F(m)}{\sqrt{4b^2 + (w^2 + p^2)}}$	03
()	$\sqrt{4b^2p^2+(\omega^2+p^2)}$	10
C	m = 2kg, $k = 51.26 N/m$,	
	8= 5 kg/8	
123	$\omega = \sqrt{\frac{k}{m}} \Rightarrow \omega^2 = \frac{k}{m} = 25.63 \Rightarrow$	01
i pa	$2b = \frac{8}{m} = b = \frac{8}{2m}$	01
Ĭ.	$b^2 = \frac{y^2}{4m^2} = 1.5625 \rightarrow 02$	01
10 10	Company equent 1 & 2	
	b2 × w2=): It is the cop of ->	01
	Underdamping (04)
3. a)	Statement of Hooke's law	
3. a)		20
	S Discussion of (1) Propotional limit of Elastic limit of	2
	A / (ii) Plastic behaviour?	52
	(S. Hard & S. Soft)] (iii) Uttimate strength of Fracture point	32
(30) -	-> strain	98)

Question Number	Solution	Marks Allocated
b)	Fig with early of a bending beam	02
	change in length = 80, linear strain= 8	02
	Y = Longitudinal stress = F/a ->	01
(5)	Moment of this force about neutral accis? $= F \times r = \frac{y \cdot a r^2}{r^2}$	01
	For entire beam = $\sum \frac{1}{R} \cdot ax^2 = \frac{3}{2}$	01
	Bending moment for rectangular body	
	$=\frac{1}{R}\cdot I_g = \frac{1}{R}\times \frac{bd^3}{12}$	08
(S)	$L=2m$, $R=0.013\times10^{-2}$, $F=14.7N$	> 01
7633	$Y = 2.1 \times 10^{11} \text{ N/m}^2$ $Y = \frac{F/a}{26/1} \Rightarrow x = \frac{F.L}{a.Y} (:a = \pi R^2)$	01
	substitution & Calculation $3-3$ $x = 2.6 \times 10^{-3}$ so	02
Thirtie	The miles of the control of	(04)
A. a)	Definition of Young's modules _	03
F 7 1	Definition of Bulk modules with	03
((S) ()	Definition of Rigidity modules with	02
	Definition for Single Countilever ->	01
10 9		0)
1 10	Bending moment = WX (L-25)	0)
1 30	$ \begin{array}{ccc} R & \gamma. I_g \\ \downarrow & = d^2y & \longrightarrow \end{array} $	01
	$\frac{dy}{dx} = \frac{1}{12} \cdot \left[\frac{1}{2} - \frac{x^2}{2} \right]$	0) -0
1	$y = \frac{W}{V \cdot I_0} \cdot \left[\frac{L \cdot z^2}{2} - \frac{z^3}{6} \right] \rightarrow$	01

Question Number	Solution	Marks Allocated
5.5	Depression produced at the loaded	
	end, yo = WI3	0)
	Finally & V - 4WL3 for	
	Finally, Ry = 4WL3 for -> rectangular Gross- section ->	01
	rectangular Gross- Lectron.	(08)
3	(henerally Y= W.L3 3 go. Ig)	
c)	L= 1.500), R=0.0425×1000	
9	0 = T/45 rad, 7 = 8.3 × 10 10 × m3	
	Couple per unit twist is given by, $C = \frac{\pi R^4}{2L} = 2.8357 \times 10^{-3}$	A 9
10 4	COUPLE POS CHART - 2.8357 X 10	20
	$C = \frac{1}{2}L$	02
	Torque required, 1 = 0.	(A)
	: 4 = 1.98×10-4 N.80	(04)
78 8	Module - 3	
5. a)	Definition of Lattice, Space lattice	1+1+1
	and unit cell	03)
	Seven Crystal system we explanation	7
~	with diagram	07
6	Types of optical fibers, Three types	(10)
	each carries two marks.	66
	(Diagram with Exploration)	
1	(Diagram with Explanation)	
	$\lambda = 0.7 \times 10^{6} \text{ m}, \ n = 2, \ \theta = 10, \ d = ?$	01
100	2d sino = nd	01
ta:	$d = \frac{n\lambda}{2 \sin \theta} = 4.03 \times 10^{-10}$	02
	2 8170	(6A)
6		
0. a)	Definition for A.P.F ->	01
6=4-R	A.P.F for SCC 770.5268	0.01
=912.R C	A. P. F. for BCC With fig 3+3+37	10
	Page 4	10

Question Number	Solution	Marks Allocated
6	Diagram, no. Rin(00) = on. Rin(01) ->	03
Spo - 5	no sin (90-0) = n2 sin (90°)	
S06 -	$cos(0) = n_2$	A 0
	$8in(00) = \sqrt{1 - \frac{n^2}{n^2}} = \frac{1}{n_0} \times \sqrt{n^2 - n_0^2}$	03
10 6-	+	(06)
	N. A = \107-32	
	n,= 1.50, n= 1.45, N.A=?	
	$\theta = 2$	21
20 0	N. A = \n.2-02	0)
10-2-1	N. A=0.384	0)
20 6	$N.A = gira(\theta_a)$	0)
	$\Theta_a = 22.58^{\circ}$	01
		(04)
5	Module - 4	
7. a	$\Psi = A \cdot e^{i(kx - \omega t)}$ to $\frac{d\psi}{dx^2} = -\frac{\omega^2}{v^2} \cdot \psi$	03
1 10 6	Total Energy, E = K.E+P.E to	03
	$\frac{d^2 \Psi}{dx^2} + \frac{8\pi^2 m}{b^2} \cdot (E - V) \cdot \Psi = 0$	(06)
9	Figure with Explanation ->	05
	Heing Energy level diagram expla	9
300	-nations of Working function	05
	$a = 1 \times 10^{-10}$, $E_0 = ?$, $E_1 = ?$, $E_2 = ?$	(10)
	0	01
1 15 19	$E_0 = \frac{n^2 h^2}{8m\alpha^2}$ $E_0 \Rightarrow n = 1 \therefore E_0 = 37.64 \text{ eV} \implies$	01
175 4 60	$E_1 = > n = 2$.: $E_1 = 4(E_0) = 150.54eV$	01
(14) T	$E_{a} \Rightarrow n=3$: $E_{a} = 9(E_{o}) = 338.7 \text{ eV}$	01
		(04)

Question Number	Solution	Marks Allocated
8. a)	statement and Explanation of?	-mocuted
	Heisenberg's Uncertainty Principle J	042
N 100 100	tingteins theory of relativity	<i>-</i> > 0&
	$E = C \cdot (P + V m_0 c^2)$	
(38)	$\Delta P_{x} > 1.1 \times 10^{-20} \text{ N. sec} \rightarrow$	01
	Upto E> 20.6 MeV@ 9.7 MeV ->	02
6	conclusion ->	(08)
5)	Expression for (i) Rate of induced absorption (ii) Rate of sportaneous emission (iii) Rate	
	of stimulated emission (iii) Rate	03
** : 4	B12 N1U2 = A21 · No + B21 · 12 No · U) +	>01
10 4	upto Uz = Azi . [Biz ehilkT 1]	03
13,	B21 B21 ehr/kt_1	
(180)	$U_{\lambda} = \frac{A}{B \cdot (e^{b^{\gamma} kT} - 1)}$	01
	b (e h - 1)	08)
(c)	N2 = N1. e-h8/KT	0)
	$N_2 = e^{-\frac{bc}{\lambda kT}}$	01
	NI	
1912)	substitution of Calculation ?	02
	$\frac{N_2}{N_1} = e^{-69.14} = 9.39 \times 10^{-31}$	04)
9. a)	Definition of Fermi Enemal 5 62 12 12 13	
De	Definition of Fermi Energy, $E_F(0) = \frac{h^2}{8 \text{ in}} \times \frac{(31)^3}{417}$ finition of Fermi factor, $f(E) = \frac{E-E_F}{E-E_F}$	> 02
(i)	EXEF at 7=0K, f(E)=1 e E-EF+1	02
	$E > E_F$ at $T = 0K$, $f(E) = 0$	01
	IE-E- of TYOK PED-A.5	0)
8	raphical fig with conclusion -> 0	+ 02
	- C. 185 - 1, 504 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10)
1 (6.0)		

Question Number	Solution	Marks Allocated
ь)	consideration & I = Ne. EAV ->	02
(5)	$T = T/A \Rightarrow N_e. eV$	01
	J= o.E	01
13 -	upto oe = Ne. elle, oh = Nh. ellh ->	01
	o= e. (Ne. le + Nh. lhh)	
10 %	For Intringic gerniconductor	01
Sin e	Ne ~ Nh ~ n'	60
	i, o ; = n; e (Me +Mh)	0.0
c	n; = 2.372 ×10-19/m3 × lle = 3.38 m2/1/3e	
	Uh= 0.18 m2/V, sec	2.1
	oi=ni.e(Me+Mh)	0)
-	P: =	01
e e	Pi = ni. e (Me+Mh)	
	subite & calculation	02
	$f_1 = \frac{1}{1.35 \times 10^{-37}} = 7.41 \times 10^{36} \text{ m}$	04
	(A)	
10 a)	Any two assumptions of G.F.E.T ->	02
	N(E). dE = g(E). dE x f(E) ->	01
	f(E)=1, g(E).dE = 8 VE II m3/2. E/2.dE	02
	1(1)-1, g(E).ac - 13 12 .ac	02
j j	then Integrating of Simplify we?	03
	get $E_F(0) = \frac{h^2}{8m} \times \left(\frac{3n}{\pi}\right)^{2/3}$	(08)
	Definition for dielectrics and Internal	
	field -	02
4	consideration de 16 = «e. E; ->	02
	upto $E_i = \frac{P}{N \cdot x_e}$	01
	upto $E = \frac{P}{E_0(E_8 - 1)}$	01
	upto $\frac{1}{N \cdot \alpha_e} = \frac{1}{\varepsilon_o} \cdot \left[\overline{\varepsilon_r - 1} + 7 \right] \rightarrow$	01

Question	Solution	Marks
Number	The state of the s	Allocated
3.3	$\frac{\varepsilon_{8}-1}{\varepsilon_{8}+2}=\frac{N. \langle \varepsilon_{8}\rangle}{3\varepsilon_{6}}$	01
c)	E = 1000 V/m, P = 4.3 X 10 C/m2	08
	G. = 9	
10 <-	$P = \mathcal{E}_{o}(\mathcal{E}_{\tau} - \mathcal{J}) \cdot E \longrightarrow$	01
)		01
10 3	Co.E	·
Yad .	substitution and calculation ->	02
la W	substitution and calculation \rightarrow $\varepsilon_r - 1 = 4.855$, $\varepsilon_8 = 5.855$	O A
	Trackethia miera	
10 31		
	(144+34) o (16 (148+34))	
	metholished of the sign	
	Service - Legin Andrew	
- CO 02	The the property of the port of	01
10, 4	- (3) kg 3h.(3), = 3h.(4) h	
3 1 3		
	i de la companya di sua di Companya sua di sua	
	Prince Villeyovi, the	
X. Tr.		
in	Diffif for for dickdous and 1040	
	tion to the second seco	
	· A SA S	
10 11-	(that a last a soft office	

Page 8

BGSIT	Doc. Title: Internal Test Question Paper		Doc. No.: 06#Form#02b	
BG Nagara	Page 1 of 1	Date: 05.04.2020	Rev. No. 00	

INTERNAL TEST QUESTION PAPER FORMAT- CBCS SCHEME (VTU)

Name of the Faculty: SHANKARA S R

Signature:

Blackon

BGS Institute of Technology

Department: Engineering Physics

Test: I

Semester: II

Section: D,E & F

USN:

Subject Name & Code: Engg.Physics & 18PHY22

Instructions

Duration: 60 minutes

Max. Marks: 30

i) Select one question from each part.

ii) All main questions carry equal marks.

Question Number	Questions Questions	Marks	СО	Levels		
	PART – A					
1	a) Explain the following parameters. (i) Acceptance angle (ii) Numerical aperture (iii) V-Number (iv) RRID OR Fractional index change v) Attenuation.	10	CO3	L2		
	b) Explain the basics of point to point communication system with neat diagram.	5	CO3	L2		
	OR					
	a) Explain the different types of Optical fiber with suitable diagram and Derive an expression for numerical aperture in terms of R.I of core & clad.	10	CO3	L2		
2	b) Calculate the V-number for a fiber or core diaeter $40 \mu m$ & with refractive indices of 1.55 & 1.50 respectively for core and cladding when the wave length of the propagating wave is 1400 nm . Also calculate the number of modes that the fiber can support for propagation. Assue that the fiber is in air.	5	CO3	L3		
	PART – B					
3	a) Derive an Expression for energy density under the condition of thermal equilibrium in terms of Einstein's coefficient.	10	CO4	L2		
	b) Explain stimulated absorption and spontaneous emission.	5	CO4	L3		
	OR					
4	a) State Heisenberg's Uncertainty principle and show that electron cannot exist inside the nucleus of an atom using Heisenberg's Uncertain ty principle.	10	CO4	L2		
•	b) Drive an expression for time independent Schrodinger wave equation in one dimensional motion	5	CO4	L2		

BG Naga: 571 44

DEPARTMENT: PHYSICS

Scheme & Solution

Test - 01

Semester: Second

Subject Title: Engineering Physics

Subject Code: 18PHY-22

Question Number	Solution	Marks Allocated
	Part - A	3
1 (a)	(i) Definition for acceptance angle-	→ 02
	(ii) Definition for Numerical aperture	
	(iii) Definition for V-Number —	→ 02
	(iv) Definition for RRID (or) fraction	
Tog, To	- al index change	7 02
	(v) Definition for attenuation -	→ 02
16		10
<i>(b)</i>	Block diagram of point to point	
	communication system	→ 02
	Explanation for point to point	
	communication system	703
Z (a)	(i) step Index single mode O.F	702
	(ii) Step Index multimode O.F -	-> 02
A sand	(iii) epaded Index multimode O.F.	702
2 2	Fig with exploration -	→ 02.
N _k	no sim (00) = no sim (01)	01
	n, kim (90-01) = n2 sim (90)>	
4	$8im(00) = \sqrt{n_1^2 - n_2^2}$	
	Fol evil medium, no =1	701
	: N.A = \ m12-m22	
	Page 1	(OH)

CBCS Scheme (Adichunchanagiri University)

DEPARTMENT: PHYSICS

Scheme & Solution

Semester: Second

Subject Title: Engineering Physics

Subject Code: 18PHY-22

Question Number	Solution	Marks Allocated
(b)	for data	+ 01
	V = ITel . \m 12 - m22	-y 01
	$V = \frac{3.14 \times 40 \times 10^{-6}}{1400 \times 10^{-9}} \times \sqrt{(1.55)^2 - (1.50)^2} -$	→ 01
	N = 35	→ 01
7 7 7 2 7	Nor of modes (Mn) = $\frac{V^2}{2}$	→ 01
* 3 *-	1225	1/2
. 3	=612.5	65
	Part-B	9
3 (a)	Rate of stimulated absolption	→ 02
	Rate of spontaneous emission,.	-702
	Rote of stimulated emission, -	-> 02
	= 1391 .115 .2	
20	simplification & final -	→ OH
(UN = A . [Lehviket]	(10)
27		(10)
	- 1 () - () - () - ()	
	Page 1	

Question Number	Solution		Marks Allocated
(b)	Explanation of stimulated	ol abser_ ption	-7 02.1/2
	Explonation of spontones	us emission	-7 02. V2
			5
4 (a)	For statement of Heise		→02
	uncestainity primul	ple	
	Explonation		702
* # # # # # # # # # # # # # # # # # # #	$E=mc^2$		->01 ->01
	p>mv		+01
	$DP \cdot DX \geq \frac{h}{\mu \pi}$	-	-701
	P ≥ 0,5 × 10 -20 N. See	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	→ 01
	E L 20MeV		-701
	Final conclusion		(10)
(6)	y = A.e'(Kn-wt)		701
: :-	d29 - 12 - d24 d22		101
	$\frac{d^2\psi}{dx^2} = -k^2, \psi$		01
	p2 = (E-V) · 2 m		01
	$\frac{d^2 \varphi}{dx^2} + \frac{8\pi^2 m}{h^2} (E-V) \cdot \psi = \frac{1}{h^2}$ Page 3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	(05)

G.S. Institute of Technology

B.G. Naga: Mandy

Mandy Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

Mandy

M

BGSIT	Doc. Title: Internal Test Question Paper		Doc. No.: 06#Form#02b
BG Nagara	Page 1 of 1	Date: 09.06.2020	Rev. No. 00

INTERNAL TEST QUESTION PAPER FORMAT- CBCS SCHEME (VTU)

Name of the Faculty: SHANKARA S R

Signature: /

BGS Institute of Technology

Department: Engineering Physics

Test: II

i cst. ii

USN:

Semester: II

Section: D,E & F

Subject Name & Code: Engg.Physics & 18PHY22

Instructions

Duration: 60 minutes

Max. Marks: 30

i) Select one question from each part.

ii) All main questions carry equal marks.

Question Number	LINESTIANS		СО	Levels	
Tiumber	PART – A				
1	a) With a neat diagram explain the construction and working function of Reddy shock tube.	10	CO1	L2	
	b) What are shock waves? Mention any four applications of Shock waves.	5	CO1	L1	
	OR	2-1			
	a) What are damped oscillations? Give the theory of damped oscillations and hence discuss the case of critical damping.	10	CO1	L2	
2	b) A vibrating system of natural frequency 500 Hz, is forced to vibrate with a periodic force/unit mass of amplitude 100x10 ⁻⁵ Newton/kg in the presence of a damping/unit mass of 0.01x10 ⁻³ rad/sec. Calculate the maximum amplitude of vibrate of the system.	5	CO1	L3	
	PART – B	-			
3	a) Derive the expression for Fermi energy at absolute zero Kelvin.	8	CO5	L2	
	b) Derive Clausius-Mossotti equation.	7	CO5	L2	
	OR				
	a) Discuss the probability of occupation of various energy states by electrons at $T=0^{0}$ K and $T>0^{0}$ K, on the basis of Fermi factor.	8	CO5	L2	
4	b) Calculate the Fermi energy in eV for a metal at zero Kelvin, whose density is 10500kg/m^3 , atomic weight is 107.9 , and it has one conduction electron per atom. (Given $N_A = 6.025 \times 10^{26} / \text{k mole}$)	7	CO5	L3	

G.S. Institute of Technology B G Nagar 571 446 ayamangala Tq, Mandya ing Karnataka (INDIA)

CBCS Scheme (

DEPARTMENT: PHYSICS

Scheme & Solution

Test - 02

Semester: Second

Subject Title: Engineering Physics

Subject Code: 18PHY-22

Question Number	Solution	Marks Allocated
Number	Part - Assa	e ' , y
1 0)	Neat diagram ->	02
	Explain the construction ->	04
4 × 1 1 × 1	Explain the working function ->	(10)
6)	Defination for shock waves ->	01
	i) Medical field for eye dezect ii) For wood preservation —> iii) For pencil industry iv) For Defence field	04
2. a)	Defination for Damped oscillation	->02
	Restoring force & Displacement	
	Fr $\propto x = > F_x = -Kx - 0$ Frictional force $\propto \text{ velocity}$ $F_t \propto \frac{dx}{dt} = > F_t = -x \cdot \frac{dx}{dt} - 0$	02
	Resulting force = $Fx + Fx$ $m \cdot \frac{d^2x}{dt^2} = -kx - v \cdot \frac{dx}{dt}$	02
10 /2-	$\frac{d^2x}{dt^2} + 2b \cdot \frac{dx}{dt} + \omega^2, x = 0$	01
G (1 1 1 -)	General solution for the above	
	Equation $\rightarrow x = A.e^{xt} \rightarrow$	01
	Creneral solution for the above Equation $\rightarrow x = A \cdot e^x t \longrightarrow x = \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{b}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{x_0}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{x_0}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{x_0}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{x_0}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{x_0}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{x_0}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{x_0}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{x_0}{\sqrt{b^2 - w^2}} \right] \cdot e^x + \frac{x_0}{2} \left[1 + \frac{x_0}{\sqrt{b^2 - w^2}$	

Page 1

Question Number	Solution	Marks Allocated
	$\left[1-\frac{b}{\sqrt{b^2-w^2}}\right]\left\{e^{(-b-\sqrt{b^2-w^2})+\frac{1}{b}}-\right\}$	02
	γ6-ω-7 ()	(10)
6)	For given data	01
	Fermula, amax = F/m 3bw ->	01
21/0/	$b = \frac{x}{2m} = 0.005 \times 10^3$	01
10 18	ω:3πV	01
	Qmax = 0.318m -> PART-B	01
3.a)	NIF). dE = Q(E). dExf(E) ->	02
	f(E)=1, g(E).dE= 8/2.11 m3/2 E1/2 dE>	02
	then integrating & Simplify we get,	
	$E_{F}(0) = \frac{h^{2}}{8m} \times \left(\frac{3n}{\pi}\right)^{3/3} \longrightarrow$	04
b)	Consideration and $\mu = xe \cdot E : ->$	01
	$E^{\hat{r}} = \frac{\rho}{N \cdot \alpha_e}$	01
Vin Tr	$E = \frac{P}{E_0(E_{\gamma-1})}$	01
	upto 1 = 1 (Ex-1) +3 ->	02
	$\frac{\varepsilon_{r-1}}{\varepsilon_{r+2}} = \frac{\kappa \cdot \alpha_e}{3\varepsilon_0}$	02

Page 2

Question Number	Solution	Marks Allocated
4.a)	Fermi factor, f(E)= 1 =>	02
	i)ELEF at T=OK, f(E)=1 ->	01
	ii) E>Ef at T=Ok, f(E)=0 ->	01
	???) E=Ef at TXOK, \$(E)=0.5 -)	01
	Graphical fig with conclusion ->	03
6)	For given data _>	01
	$E_F(0) = \frac{h^2}{8m} \times \left(\frac{3n}{17}\right)^{3/3} \qquad -5$	01
	n = not of free e laton x NAXD?	6 15
	$n = 5.86 \times 10^{38} / m^3$	02
	Er(0)=5.50eV ->	03
	Department of Engg. Physics C.S. Institute of Technic B G Nagar 571 **eamangala Tq, Manor **Sarratale (187)	

BGSIT	Doc. Title: Internal	Test Question Paper	Doc. No.: 06#Form#02b
BG Nagara	Page 1 of 1	Date: 24.07.2020	Rev. No. 00

INTERNAL TEST QUESTION PAPER FORMAT- CBCS SCHEME (VTU)

Name of the Faculty: SHANKARA S R

Signature: Rocciocal

BGS Institute of Technology

Department: Engineering Physics

Test: III

USN:

Semester: II

Section: D,E & F

Subject Name & Code: Engg.Physics & 18PHY22

Instructions

Duration: 60 minutes

Max. Marks: 30

i) Select one question from each part.

ii) All main questions carry equal marks.

	ii) An main questions carry equal market							
Question Number	Questions	Marks	CO	Levels				
	PART – A							
1	a) State Hooke's law. Explain the nature of elasticity with the help of stress – strain diagram.	10	CO2	L2				
	b) Define Young's modulus, Bulk modulus and Rigidity modulus.	5	CO2	L1				
	OR		les 11					
1	a)Derive an expression for the Young's modulus Y of the material of a single cantilever.	10	CO2	L2				
2	b) What are torsional oscillations? Give the expression for time period of torsional oscillations. Mention the applications of torsional oscillations.	5	CO2	L1				
	PART – B							
3	a) What is meant by Fermi energy & Fermi factor? Derive the expression for electrical conductivity in intrinsic semiconductor.	10	CO5	L2				
	b) b) A body of mass 500gm is attached to a spring and the system is driven by an external periodic force of amplitude 15N and frequency 0.796Hz. The spring extends by a length of 88mm under the given load. Calculate the amplitude of oscillation, if the resistance coefficient of the medium is 5.05 kg/s. Ignore the mass of the spring.	5	CO1	L2				
OR								
	a) What are forced oscillations? Give the theory of forced oscillations.	10	CO1	L2				
4	b) Find the relaxation time of conduction electrons in a metal of resistivity $1.54 \times 10^{-8} \ \Omega m$. If the metal has $5.8 \times 10^{28} \ conduction$ electrons per m ³	5	CO5	L3				

BG Nagar 571 AAP

*Gamangala Tq. Mandys to

Karnaraka (1911):

CBCS Scheme (dassenness angles limiterally)

DEPARTMENT: PHYSICS

Scheme & Solution

Test-03

Semester: Second

Subject Title: Engineering Physics

Subject Code: 18PHY-22

Question Number	Solution	Marks Allocated
1 800 1	Part - A	
1 (a)	For statement of hooke's law-	
	stress-strain diagram -	-102
	Explonation for nature of elas- -ticity	7 06
	- tilling	(10)
(b)	Defination for young's modules	
	Defination for bulk modulus -	
	Defination for Rigidity modulus	
	and the second of the second of the second of	(05)
2 (a)	tig with explonation	02
ra (s.	Bending moment =	
	force x perpendiculor distance -	01
	$\frac{1}{R} = \frac{d^2y}{dx^2}$, $R \rightarrow is$ the sadiculary— the circle to	501
	which the bend beam	
10 1	$\frac{dy}{dx} = \frac{W}{yTg} \left[Lx - \frac{x^2}{2} \right] + C, \qquad \Rightarrow$	02
1014		
SA. L.		

Page 1

Question Number	Solution	Marks Allocated
	40 W 4 Tg (1x2 - x3) + G -	02
	4 2 NL3 340 Ig	02
(b)	Defination for torsional oscillation	(10) > 02
	$T^2 2 \pi \times \sqrt{\frac{I}{C}}$	01
	Mention any two applications ->.	02
3 (a)	petination for fermi energy ->	02
	Defination for ferme factor -> cursent flowing through the semi	02
	-conductor, I = 9 = nel. Vd. A	01
	J=(ne. elle). E ->	01
	electrical conductivity due to e	01
	electrical conductinity due to holes on = Pn. elln	01
	vo = e (melle + Phillip) ->	01
	$: \sigma_i^* = \sigma_i^* \in (\mathcal{U}_e + \mathcal{U}_h) \longrightarrow$	01
	Page 2	(1)

Question Number	Solution Marks Allocated
(5)	anglulas frequency of the applied as force, $p = 217V = 59$ and 18
	force constant $k = \frac{F}{\chi} = 55.68 \text{ N/m} \rightarrow 01$
	Natural frequency of the oscillation $\omega = \int \frac{K}{m} = 10.55$ grades - 01
	Domping factor $b = \frac{\gamma}{2\pi n} = 0.05 \rightarrow 01$
10 -	$a = \frac{F/m}{\sqrt{(\omega^2 - p^2) + 4.6^2 p^2}} > 0.3 \text{ m} = 0.1$
H (a)	Defination for forced orcillation - 02
	Theory of forced numerations $\rightarrow 01$ Resultant force = $-\tau \frac{dx}{dt} - kx + Frimpt - 01$
	Resultant force = $m \frac{d^2x}{dt^2}$ \rightarrow $dx + \frac{x}{m} x = \frac{E}{m} sim(pt) \rightarrow 01$
	$\frac{d^2x}{dt^2} + 2b \frac{dx}{dt} + \omega^2x = \frac{F}{m} Rim(pt) \rightarrow 01$ Page 3

Question Number	Solution	Marks Allocated
10 6	$\frac{d^{2}x}{dt^{2}} = -ap^{2}sim(Pt-d) \longrightarrow$	01
	$-ap^{2}sim(pt-d) + 2bap cos(pt-d) + \omega^{2}a sim(pt-d) = \frac{E}{m} simpt$) →olm
	$-ap^2 + a\omega^2 = \frac{F}{m} \cot \alpha \longrightarrow$	01
	$\left\langle a = \frac{F/m}{\mu b^2 p^2 + (\omega^2 - p^2)^2} \right\rangle \rightarrow$	01
		(10)
<i>(b)</i>	$ \overline{\sigma} = \frac{ne^2}{me}, \tau $	01
	$\frac{1}{p} = \frac{me^2}{me} \cdot \tau$	01
	T = me	01
	T = 9.1 X 10-8 X 5.8 X 10-18 X (1.6 X 10-19)2	> 01
130-1300	<t -14="" 10="" 3.979="" =="" sec}="" td="" ×="" →<=""><td>01</td></t>	01
	the state of the state of	65
040	Mark I at I a	
Vs — Č	Despet Text are to get to the	
	Page 4 1000	also 1998, Automobile de cardinación

BG Naga:

**BG Naga:

**Camangala Tq. Mandy. Divi

B G S INSTITUTE OF TECHNOLOGY

DEPARTMENT OF PHYSICS

Academic Year: 2019 – 2020 (EVEN SEM)

For the Period: 15/04/2020 to 22/04/2020

Assignment I

Faculty Name: SHANKARA S R

Semester: II

Section: D, E AND F

Course Name: ENGINEERING PHYSICS

Course Code: 18PHY-22

Sl. No.	Questions	COs
1	Explain the following parameters. (i) Acceptance angle (ii) Numerical aperture (iii) V-Number (iv) RRID	3
2	Derive an expression for numerical aperture in terms of R.I of core & clad.	3
3	Explain the different types of Optical fiber with suitable diagram.	3
4	Explain the basics of point to point communication system.	3
5	Explain the spontaneous emission and stimulated emission process.	4
6	What are the requirements of the laser system?	4
7	Derive an Expression for energy density under the condition of thermal equilibrium in terms of Einstein's co-efficient.	
8	Explain the construction and working function of CO ₂ laser with energy level diagram.	4
9	Explain the construction and working function of semiconductor laser.	4
10	Explain the application of laser in industrial field.	4
11	State and explain Heisenberg's Uncertainty principle.	4
12	Show that electron cannot exist inside the nucleus of an atom using Heisenberg's Uncertainty principle.	4
13	Drive an expression for time independent Schrodinger wave equation in one dimensional motion.	4
14	Find the Eigen values and Eigen function for the particle in a one- dimensional potential well of infinite height.	4

Signature of Course Coordinator

 Signature of HOD HOD

Dept. of Pre Engineering
BGS Institute of Technology
B G Nagara- 571448
Nagamangala Taiuk, Mandya District.

|| Jai Sri Gurudev||

B G S INSTITUTE OF TECHNOLOGY

DEPARTMENT OF PHYSICS

Academic Year: 2019 - 2020 (EVEN SEM)

For the Period: 20/05/2020 to 25/05/2020

Assignment II

Faculty Name: SHANKARA S R

Semester: II

Section: D E AND F

Course Name: ENGINEERING PHYSICS

Course Code: 18PHY-22

SI. No.	Questions	COs
1	What are shock waves? Mention the applications of shock waves.	1
2	With a neat diagram explain the construction and working of Reddy shock tube.	1
3	What is mach number? Distinguish between acoustic, ultrasonic, subsonic and supersonic waves.	1
4	State the laws of conservation of mass, energy and momentum.	1
5	Define simple harmonic motion. Derive the differential equation for simple harmonic motion using Hooke's law.	1
6	What are damped oscillations? Give the theory of damped oscillations and hence discuss the case of critical damping.	1
7	Give the theory of forced vibrations and hence obtain the expression for amplitude.	1
8	Write short notes on (i) Damped oscillations (ii) Forced oscillations (iii) Resonance (iv) Sharpness of resonance (v) Quality factor.	1
9	Explain the failures of Classical free electron theory.	5
10	What is meant by Fermi energy and Fermi factor.	5
11	Discuss the variation of Fermi factor with energy at different temperature.	5
12	Derive the expression for Fermi energy at absolute Zero Kelvin.	5
13	What are dielectric materials. Give the relation between polarization & dielectric constant.	5
14	Derive the expression for Clausius-Mossotti equation.	5

Signature of Course Coordinator

B G Naga: 57

B G Naga: 57

Reamangala Tq, Mandy Construction of the Construction of English Construct

Signature of HOD

HOD

Dept. of Pre Engineering BGS Institute of Technology B G Nagara- 571448

Nagamangala Taluk, Manaya District.

B G S INSTITUTE OF TECHNOLOGY

DEPARTMENT OF PHYSICS

Academic Year: 2019 – 2020 (EVEN SEM)

For the Period: 16/06/2019 to 23/06/2019

Assignment III

Faculty Name: SHANKARA S R

Semester: II Section: D,E&F

Course Name: ENGINEERING PHYSICS

Course Code: 18PHY-22

SI. No.	Questions	COs
1	State Hooke's law. Explain different types of stress and strain.	2
2	Explain the nature of elasticity with the help of stress – strain diagram.	2
3	Define the different types of elasticity.	2
4	Define Poission's ratio.	2
5	Derive the relation between Y, η and σ where the symbols have their usual meaning.	2
6	Derive the relation between Young's modulus, Bulk modulus and Rigidity modulus.	2
7	Explain the neutral surface and neutral axis.	2
8	Define beam. Derive the expression for bending moment of a beam for a rectangular cross section.	2
9	What is meant by single cantilever? Derive the expression for Young's modulus for rectangular beam.	2
10	Give the expression for twisting couple acting on the entire solid cylinder and couple per unit twist. Explain each term.	2
11	which the second are illations? Give the expression for time period of	2

Signature of Course Coordinator

G.S. Institute of Feebas....

B.G. Naga: 571 14:

Camangala Tq. Mandy: 12:

Signature of HOD

Dept. of Pre Engineering
BGS Institute of Technology
B G Nagara- 571448

Nagamangala Taiuk, Mandya District.

Register Numbers for Computer Science & Engineering students of 2019-20 admissions

No	Name	Register Number
1	ABHISHEK N S	19CSE001
2	AKASH K R	19CSE002
3	AKSHITHA K A	19CSE003
4	ANUSHA M S	19CSE004
5	ARBEENA KHANUM	19CSE005
6	BEERENDRA PRASAD N M	19CSE006
7	BHANUSHREE	19CSE007
8	CHAITHANYA S B	19CSE008
9	CHANDANA K	19CSE009
10	CHARAN M	19CSE010
11	CHETAN KUMAR S	19CSE011
12	CHITRASHREE N	19CSE012
13	DARSHAN B S	19CSE013
14	DARSHAN H R	19CSE014
15	DASHAMI H S	19CSE015
16	DEEPIKA M D	19CSE016
17	DHANUSH GOWDA K N	19CSE017
18	DHANUSH N RAO	19CSE018
19	DHANYASHREE H R	19CSE019
20	GAGAN P R	19CSE020
21	GAJENDRA SHETTY T U	19CSE021
$\frac{21}{22}$	GOWDA SAHANA KUMAR	19CSE022
23	GOWDA SANJAY KRISHNA	19CSE023
23 24	GOWDA SANGAT KROSTAVI	19CSE024
_	HARSHITHA B	19CSE025
25	HEMA H C	19CSE026
26	HEMAVATHI L N	19CSE027
27	INDUSHREE H S	19CSE028
28		19CSE029
29	JEEVAN P	19CSE030
30 31	KARTHIK M N	19CSE031
	KAVANA K	19CSE032
32	KAVYA K J KAVYA R S	19CSE033
33	KEERTHANA G R	19CSE034
34 35	KEERTHANA G K KEERTHANA SARATHI S	19CSE035
<u>35</u> 36	KEERTHANA V	19CSE036
	KIRAN F TAVARI	19CSE037
37		19CSE038
38 39		19CSE039
		19CSE040
40	MAHALAKSHMI K S	19CSE041
41		19CSE042
47	MANOJ M R	19CSE043

Adiehunehanagzeichnversicht, bis waser

Register Numbers for Computer Science & Engineering students of 2019-20 admissions

S1 No	Name	Register Number
44	MONALISA M GOWDA	19CSE044
45	MONIKA G	19CSE045
46	MONISH T R	19CSE046
47	MUSKAAN MOHAMMADI	19CSE047
48	MUSKAAN SAHER	19CSE048
49	NAGASHREE C C	19CSE049
50	NANDAN GOWDA P	19CSE050
51	NAVYA D K	19CSE051
52	NAYANA R	19CSE052
53	NIKHIL G S	19CSE053
54	POOJA K V	19CSE054
55	POORNACHANDRA H C	19CSE055
56	PRAJWAL B N	19CSE056
57	PRAKRUTHI R	19CSE057
58	PRIYANKA H K	19CSE058
59	RACHANA K N	19CSE059
60	RAKSHITH N G	19CSE060
61	REVANTH N R	19CSE061
62	RUCHITHA M V	19CSE062
63	S V KIRAN SHETTALLI	19CSE063
64	SAGAR S R	19CSE064
65	SANGEETHA C K	19CSE065
66	SANIYA SABA	19CSE066
67	SATHVIK S A	19CSE067
68	SHIFA NAAZ R	19CSE068
69	SHRAVYA J M	19CSE069
70	SHUBHA KHADRI L	19CSE070
71	SINCHANA B P	19CSE071
72	SINCHANA C	19CSE072
73	SINDHUSHREE C N	19CSE073
74	SUHAS DEVANGA H K	19CSE074
75	SUMAN GOWDA K B	19CSE075
76	SUNIL R	19CSE076
77	SUSHEELKUMAR H S	19CSE077
78	SUVIN T S	19CSE078
79	TEJAS	19CSE079
80	THEJAS A	19CSE080
81	THEJASWINI K R	19CSE081
82	THRUPTHI M N	19CSE082
83	UMME HANI N	19CSE083
84	VARSHA H C	19CSE084
85	VARSHINI J	19CSE085
86	VIBHA B	19CSE086

Register Numbers for Computer Science & Engineering students of 2019-20 admissions

Nomo		Register Number	
S1 No		19CSE087	
87	VIDYA R GOWDA	19CSE088	
88	VIDYASHREE M	19CSE089	
89	VIJAY A S		
	YASHASWINI T P	19CSE090	

HOD

Registrant (Exalting in the English BGS Institute of Technology B G Nagara- 571448 Nagamangala Taluk, Mandya District.

Register Numbers for Mechanical Engineering students of 2019-20 admissions

S1 No	Name	Register Number
1	AJAY A C	19MEE001
2	AKASH M	19MEE002
3	AKSHAY	19MEE003
4	BAHUGUNA V	19MEE004
5	DARSHAN B G	19MEE005
6	DEEPAK GOWDA M	19MEE006
7	GANESHCHAR B	19MEE007
8	JEEVITHA M T	19MEE008
9		19MEE009
	KIRAN B KIRAN GOWDA H K	19MEE010
10		19MEE011
11	LIKHITH S J	19MEE012
12	LOHITH K H	19MEE013
13	LOKESH N M	19MEE014
14	MADAN K N	19MEE015
15	MANJUNATH B	19MEE016
16	MANOJ P	19MEE017
17	MOHAMMED SHAHID PASHA	19MEE018
18	MOHANKUMAR G T	19MEE019
19	NAMITHGOWDA D R	19MEE020
20	NANDAN B S	19MEE021
21	NIKHILGOWDA H N	19MEE021
22	OMKAR A	19MEE022 19MEE023
23	PAVANKUMAR C G	
24	RAKSHITH GOWDA G S	19MEE024
25	RAKSHITHGOWDA B	19MEE025
26	RAVIKUMAR C P	19MEE026
27	SHASHANK K R	19MEE027
28	SINCHANA ARADHYA S B	19MEE028
29	SUBRAMANIAN V	19MEE029
30	SUDEEP D C	19MEE030
31	SURAJPRASAD R	19MEE031
32	VARUN K S	19MEE032
33	VARUN M S	19MEE033
34		19MEE034

musum HOD

BGS Institute of Technology

B G Nagara- 571448

Nagamangala Taluk, Mandya District.

Sri Adichunchanagiri Shikshana Trust ®

B.G.S. INSTITUTE OF TECHNOLOGY PROCTOR DETAILS

SL NO	NAME OF THE STUDENT	USN	STUDENT	PARENTS	E - Mail ID
1	AISHWARYA T	19CVE001	6361642757	9964580612	aishnayak211@gmail.com
2	AJAY H.J	19CVE002	9740252964	9741533264	ajayg3162@gmail.com
3	ARUNKUMAR B.R	19CVE003	8747937968	9535147214	arunhunsuru@gmail.com
4	CHANDAN A.N	19CVE004	8431364797	9900569199	chandannagarajugowda@gmail.com
5	CHANDANA T R	19CVE005	6363598815	9483680142	rameshsughunacd@gmail.com
6	DARSHAN GOWDA R	19CVE006	9632437748	9448610048	darshangowda2129@gmail.com
7	DARSHAN M L	19CVE007	6360105185	9980204344	Darshandarshu419@gmail.com
8	DHANUSH P K	19CVE008	8970321962	8970321962	dhanushpk2002@gmail.com
9	DURGESH MASTAPPA NAIK	19CVE009	9113509810	7975319832	durgeshkodsul@gmail.com
10	FARHAN AHMED	19CVE010	8050536312	8197300598	sharifarhan0@gmail.com
11	GOUTHAM D G	19CVE011	9945976936	9663936246	teju7740@gmail.com
12	HARSHITH M GOWDA	19CVE012	6363065644	9164807585	hmgowda119@gmail.com
13	K R MAHENDRA	19CVE013	9900290776	7259651936	Chinnumahendra309@gmail.com
14	KAVANA B P	19CVE015	8105103438	8183037565	kavanabp2@gmail.com
15	KISHOR R	19CVE016	6363465567	9482454990	kishorrgowda.01@gmail.com

Placlas

HOD

Dept. of Pre Engineering BGS Institute of Technology B G Nagara. \$21,148

Nagamangala taruk, Mandya District.

|| Jai Sri Gurudev || Adichunchanagiri Shikshana Trust (R) BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

Sl No	Name	Register Number	Engg. Physics Result
1	ABHISHEK N S	19CSE001	PASS
2	AKASH K R	19CSE002	PASS
3	AKSHITHA K A	19CSE003	PASS
4	ANUSHA M S	19CSE004	PASS
5	ARBEENA KHANUM	19CSE005	PASS
6	BEERENDRA PRASAD N M	19CSE006	PASS
7	BHANUSHREE	19CSE007	PASS
8	CHAITHANYA S B	19CSE008	PASS
9	CHANDANA K	19CSE009	PASS
10	CHARAN M	19CSE010	PASS
11	CHETAN KUMAR S	19CSE011	PASS
12	CHITRASHREE N	19CSE012	PASS
13	DARSHAN B S	19CSE013	PASS
14	DARSHAN H R	19CSE014	PASS
15	DASHAMI H S	19CSE015	PASS
16	DEEPIKA M D	19CSE016	PASS
17	DHANUSH GOWDA K N	19CSE017	PASS
18	DHANUSH N RAO	19CSE018	PASS
19	DHANYASHREE H R	19CSE019	PASS
20	GAGAN P R	19CSE020	PASS
21	GAJENDRA SHETTY T U	19CSE021	PASS
22	GOWDA SAHANA KUMAR	19CSE022	PASS
23	GOWDA SANJAY KRISHNA	19CSE023	PASS
24	GOWTHAMI S	19CSE024	PASS

Engg. Physics Lab Result
PASS

25	HARSHITHA B	19CSE025	PASS
26	НЕМА Н С	19CSE026	PASS
27	HEMAVATHI L N	19CSE027	PASS
28	INDUSHREE H S	19CSE028	PASS
29	JEEVAN P	19CSE029	PASS
30	KARTHIK M N	19CSE030	PASS
31	KAVANA K	19CSE031	PASS
32	KAVYA K J	19CSE032	PASS
33	KAVYA R S	19CSE033	PASS
34	KEERTHANA G R	19CSE034	PASS
35	KEERTHANA SARATHI S	19CSE035	PASS
36	KEERTHANA V	19CSE036	PASS
37	KIRAN F TAVARI	19CSE037	PASS
38	KOUSHIK A S	19CSE038	PASS
39	KRUTHIKA D Y	19CSE039	PASS
40	KUMARA A B	19CSE040	PASS
41	MAHALAKSHMI K S	19CSE041	PASS
42	MANOJ M R	19CSE042	PASS
43	MOHAMMED AZHAR	19CSE043	PASS
44	MONALISA M GOWDA	19CSE044	PASS
45	MONIKA G	19CSE045	PASS
46	MONISH T R	19CSE046	PASS
47	MUSKAAN MOHAMMADI	19CSE047	
48	MUSKAAN SAHER	19CSE048	PASS
49	NAGASHREE C C	19CSE049	PASS
50	NANDAN GOWDA P	19CSE050	PASS
51	NAVYA D K	19CSE051	PASS
52	NAYANA R	19CSE052	PASS
53	NIKHIL G S	19CSE053	PASS
54	POOJA K V	19CSE054	PASS PASS

PASS
PASS

			Î
55	POORNACHANDRA H C	19CSE055	PASS
56	PRAJWAL B N	19CSE056	PASS
57	PRAKRUTHI R	19CSE057	PASS
58	PRIYANKA H K	19CSE058	PASS
59	RACHANA K N	19CSE059	PASS
60	RAKSHITH N G	19CSE060	PASS
61	REVANTH N R	19CSE061	PASS
62	RUCHITHA M V	19CSE062	PASS
63	S V KIRAN SHETTALLI	19CSE063	PASS
64	SAGAR S R	19CSE064	PASS
65	SANGEETHA C K	19CSE065	PASS
66	SANIYA SABA	19CSE066	PASS
67	SATHVIK S A	19CSE067	FAIL
68	SHIFA NAAZ R	19CSE068	PASS
69	SHRAVYA J M	19CSE069	PASS
70	SHUBHA KHADRI L	19CSE070	PASS

PASS
PASS

Total number of Student	70
Number of student Pass	70
Number of student Fail	NILL
Total Percentage	100%

70	
70	
NILL	
100%	

HOD
Dept. of Pre Engineering
BGS Institute of Technology
R & Nagara, 571,148
Nagamangata Tatuk, Mandya District.

|| Jai Sri Gurudev || Adichunchanagiri Shikshana Trust (R) BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

Sl No	Name	Register Number	Engg. Physics Result
1	AJAY A C	19MEE001	PASS
2	AKASH M	19MEE002	PASS
3	AKSHAY	19MEE003	PASS
4	BAHUGUNA V	19MEE004	PASS
5	DARSHAN B G	19MEE005	PASS
6	DEEPAK GOWDA M	19MEE006	PASS
7	GANESHCHAR B	19MEE007	PASS
8	JEEVITHA M T	19MEE008	PASS
9	KIRAN B	19MEE009	PASS
10	KIRAN GOWDA H K	19MEE010	PASS
11	LIKHITH S J	19MEE011	PASS
12	LOHITH K H	19MEE012	PASS
13	LOKESH N M	19MEE013	PASS
14	MADAN K N	19MEE014	PASS
15	MANJUNATH B	19MEE015	PASS
16	MANOJ P	19MEE016	PASS
17	MOHAMMED SHAHID PASHA	19MEE017	PASS
18	MOHANKUMAR G T	19MEE018	PASS
19	NAMITHGOWDA D R	19MEE019	PASS
20	NANDAN B S	19MEE020	PASS
21	NIKHILGOWDA H N	19MEE021	PASS
22	OMKAR A	19MEE022	PASS
23	PAVANKUMAR C G	19MEE023	PASS
24	RAKSHITH GOWDA G S	19MEE024	PASS
25	RAKSHITHGOWDA B	19MEE025	PASS

Engg. Physics Lab
Result
PASS

26	RAVIKUMAR C P	19MEE026	PASS
27	SHASHANK K R	19MEE027	PASS
28	SINCHANA ARADHYA S B	19MEE028	PASS
29	SUBRAMANIAN V	19MEE029	PASS
30	SUDEEP D C	19MEE030	PASS
31	SURAJPRASAD R	19MEE031	PASS
32	VARUN K S	19MEE032	PASS
33	VARUN M S	19MEE033	PASS
34	VINAY M	19MEE034	PASS

_	
	PASS
_	

Total number of Students	34
Number of students Pass	34
Number of students Fail	NILL
Total Percentage	100%

34	
34	
NILL	
100%	

HOD

Dept. of Pre Engineering
BGS Institute of Technology
B G Nagara- 571.448

Nagamangara taruk, Manuya District

BGS Institute of Technology BG Nagara, Karnataka-571448

BRANCH: Computer Science Engineering

D 1.		
Result	Δ na	VCIC
Trosuit	I IIIa	r y DID

Sl. No.	Name of the Student	Register Number	18PHY-22
1	ABHISHEK N S	19CSE001	PASS
2	AKASH K.R	19CSE002	PASS
3	AKSHITHA K A	19CSE003	PASS
4	ANUSHA M S	19CSE004	PASS
5	ARBEENA KHANUM	19CSE005	PASS
6	BEERENDRA PRASAD N M	19CSE006	PASS
7	BHANUSHREE	19CSE007	PASS
8	CHAITHANYA S.B	19CSE008	PASS
9	CHANDANA K	19CSE009	PASS
10	CHARAN M	19CSE010	PASS
11	CHETAN KUMAR S	19CSE011	PASS
12	CHITRASHREE N	19CSE012	PASS
13	DARSHAN B.S	19CSE013	PASS
15	DASHAMI H S	19CSE015	PASS
16	DEEPIKA M D	19CSE016	PASS
18	DHANUSH N RAO	19CSE018	PASS
19	DHANYASHREE H.R	19CSE019	PASS
20	GAGAN P.R	19CSE020	PASS
21	GAJENDRA SHETTY T.U	19CSE021	PASS
22	GOWDA SAHANA KUMAR	19CSE022	PASS
23	GOWDA SANJAY KRISHNA	19CSE023	PASS
24	GOWTHAMI S	19CSE024	PASS
25	HARSHITHA B	19CSE025	PASS
26	НЕМА Н.С	19CSE026	PASS
27	HEMAVATHI L N	19CSE027	PASS
28	INDUSHREE H S	19CSE028	PASS
29	JEEVAN P	19CSE029	PASS
30	KARTHIK M N	19CSE030	PASS
31	KAVANA K	19CSE031	PASS
32	KAVYA K J	19CSE032	PASS
33	KAVYA R S	19CSE033	PASS
34	KEERTHANA G.R	19CSE034	PASS
35	KEERTHANA SARATHI S	19CSE035	PASS
36	KEERTHANA V	19CSE036	PASS
37	KIRAN F TAVARI	19CSE037	PASS
38	KIRAN SHETTALLI S.V	19CSE038	PASS
39	KOUSHIK A.S	19CSE039	PASS
40	KRUTHIKA D.Y	19CSE040	PASS
41	KUMARA A.B	19CSE041	PASS
42	MAHALAKSHMI K S	19CSE042	PASS
43	MANOJ M R	19CSE043	PASS

18PHYL-26
PASS

BGS Institute of Technology

BG Nagara, Karnataka-571448

BRANCH: Computer Science Engineering Result Analysis

Sl. No.	Name of the Student	Register Number	18PHY-22
44	MOHAMMED AZHAR	19CSE044	PASS
45	MONALISA M GOWDA	19CSE045	PASS
46	MONIKA G	19CSE046	PASS
47	MONISH T R	19CSE047	PASS
48	MUSKAAN MOHAMMADI	19CSE048	PASS
49	MUSKAAN SAHER	19CSE049	PASS
50	NAGASHREE C C	19CSE050	PASS
51	NANDANGOWDA P	19CSE051	PASS
52	NAVYA D K	19CSE052	PASS
53	NIKHIL G S	19CSE053	PASS
54	POOJA K V	19CSE054	PASS
55	POORNACHANDRA H.C	19CSE055	PASS
56	PRAJWAL B.N	19CSE056	PASS
57	PRAKRUTHI R	19CSE057	PASS
58	PRIYANKA H K	19CSE058	PASS
59	RACHANA K.N	19CSE059	PASS
60	SHIFA NAAZ R	19CSE068	PASS
61	SUMAN GOWDA K B	19CSE075	PASS

18PHYL-26
PASS

Total Number of students	61	61
Number of students Pass	61	61
Number of students Fail	NILL	NILL
Total Percentage	100%	100%

egu 1

HOD
Dept. of Pre Engineering
BGS Institute of Technology B G Nagara- 571448

Nagamangala Taluk, Mandya District.

BGS Institute of Technology BG Nagara, Karnataka-571448

BRANCH: CSE / MECHANICAL

Result Analysis

Sl. NO	Name of the Student	Register Number	18PHY-22
1	AJAY A.C	19MEE001	PASS
2	AKASH M	19MEE002	PASS
3	AKSHAY	19MEE003	PASS
4	BAHUGUNA V	19MEE004	PASS
5	DARSHAN B.G	19MEE005	PASS
6	DEEPAK GOWDA M	19MEE006	PASS
7	GANESHCHAR B	19MEE007	PASS
8	JEEVITHA M T	19MEE008	PASS
9	KIRAN B	19MEE009	PASS
10	KIRAN GOWDA H K	19MEE010	PASS
11	LIKHITH S.J	19MEE011	PASS
12	LOHITH K.H	19MEE012	PASS
13	LOKESH N M	19MEE013	PASS
14	MADAN K.N	19MEE014	PASS
15	MANJUNATH B	19MEE015	PASS
16	MANOJ P	19MEE016	PASS
17	MOHAMMED SHAHID PA	19MEE017	PASS
18	MOHANKUMAR G.T	19MEE018	PASS
19	NAMITHGOWDA D R	19MEE019	PASS
20	NANDAN B S	19MEE020	PASS
21	NIKHIL GOWDA H N	19MEE021	PASS
22	OMKAR A	19MEE022	PASS
23	PAVANKUMAR C G	19MEE023	PASS
24	RAKSHITH GOWDA G S	19MEE024	PASS
25	RAKSHITHGOWDA B	19MEE025	PASS
26	RAVIKUMAR C.P	19MEE026	PASS
27	SHASHANK K R	19MEE027	PASS
28	SINCHANA ARADHYA S	19MEE028	PASS
29	SUBRAMANIAN V	19MEE029	PASS
30	SUDEEP D.C	19MEE030	PASS
31	SURAJPRASAD R	19MEE031	PASS
32	VARUN K.S	19MEE032	PASS
33	VARUN M S	19MEE033	PASS
34	VINAY M	19MEE034	PASS
35	NAYANA R	19CSE052	PASS
36	RAKSHITH N.G	19CSE060	PASS
37	REVANTH N.R	19CSE061	PASS
38	RUCHITHA M.V	19CSE062	PASS
39	SAGAR S.R	19CSE064	PASS
40	SANGEETHA C.K	19CSE065	PASS
41	SANIYA SABA	19CSE066	PASS
42	SATHVIK S A	19CSE067	PASS
43	SHRAVYA J.M	19CSE069	PASS
44	SHUBHA KHADRI L	19CSE070	PASS
45	SINCHANA B P	19CSE071	PASS
46	SINCHANA C	19CSE071	PASS
47	SINDHUSHREE C N	19CSE072	PASS
48	SUHAS DEVANGA H K	19CSE074	PASS
49	SUNIL R	19CSE076	PASS
50	SUSHEELKUMAR H S	19CSE077	PASS
51	SUVIN T.S	19CSE078	PASS
52	TEJAS	19CSE079	PASS
53	THEJAS A	19CSE080	PASS
54	THEJASWINI K.R	19CSE081	
	The state of the s	19C3EU81	PASS

TOTALL	20
PASS	
120 / 03 / 03 / 03 / 03 / 03 / 03 / 03 /	
PASS	\neg
PASS	
PASS	\neg
PASS	\neg
PASS	\neg
PASS	\dashv
PASS	
PASS	\dashv
PASS	\dashv
PASS	\dashv

18PHYL-26

BGS Institute of Technology

BG Nagara, Karnataka-571448

BRANCH: CSE / MECHANICAL

Result Analysis

		J	
Sl. NO	Name of the Student	Register Number	18PHY-22
55	THRUPTHI M N	19CSE082	PASS
56	UMME HANI N	19CSE083	PASS
57	VARSHA H C	19CSE084	PASS
58	VARSHINI J	19CSE085	PASS
59	VIBHA B	19CSE086	PASS
60	VIDYA R GOWDA	19CSE087	PASS
61	VIDYASHREE M	19CSE088	PASS
62	VIJAY A S	19CSE089	PASS
63	YASHASWINI T P	19CSE090	PASS

Γ	18PHYL-26
Г	PASS
Г	PASS
Γ	PASS
	PASS

Total Number of students	63
Number of students Pass	63
Number of students Fail	NILL
Total Percentage	100%

	63	
	63	┨
_	NILL	\dashv
	100%	┨

Placella

HOD

Dept. of Pre Engineering BGS Institute of Technology

||Jai Sri Gurudev|| **BGS INSTITUTE OF TECHNOLOGY**

BG Nagara -571448, Nagamangala Taluk

ACADEMIC AUDIT for the Academ	nic year 2019-20	(ODD/EVEN)
Name of the Faculty with Designation	SHANKARA	S. R. Asst. Professor
Course Name with code	1 Enga Physice	9 18 PHY - 12 ab & 18 PHYL - 16

Sl. No.	Contents	Seme	ster
1	Faculty profile	Theory	Lab
2	Vision and Mission of the Institute, Department, PEOs, PSOs, POs		
3	Calendar of Events (University, Institute and Department)		
4	Timetable (Class and Individual)	-	
5	Syllabus copy, CO – PO – P SO Mapping (with justification)	~	-
6	Lesson Plan		المستحقية
7	Previous Year University QPs & Question Bank	~	-
8	Notes		
9	Assignments		
10	Assessment Tools & procedure for assessment of COs (IA Test, Assignment, Quizzes, SEE)	~	
11	Innovative teaching methods	. ~	
12	List of slow learners & remedial classes	V	
13	Procter Details (for allotted students)		
14	Report of guest lectures for the course if any		
15	Feedback report		
16	Course End Survey		
17	CO attainment		V
18	Result Analysis		1/
19	PO / PSO attainment		
20	Review of attainment (course attainment)		

HOD '

External Auditor

HOD

Dept. of Pre Engineering BGS Institute of Technology B G Nagara- 571448

Nagamangala Taiuk, Mandya District.

3GS Institute of Technology

Department of Engineering Physics

	2019-20	
	Academic year 2018-19 (ODD/EVEN) (For M.E. Programmo	(Pa)
Name of the Faculty with Designation	SHANKARA S.R. Aget Professor	
Course Name with code	Engg. Physics Theory & 18PHY - 262	

		30									
Feedback Questions	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	
Av. Rating	73%	78%	75 %	76 %	75%	76%	76 %	77%	77%	78%	
	Overall Feedback										

	Course End Survey													
CO's	CO.1	CO.2	CO.3	CO.4	CO.5	CO.6								
Av. Rating	2.44	2.32	2.56	2.59	2,38	*								

9	CO Attainment												
CO's	CO.1	CO.2	CO.3	CO.4	CO.5	CO.6							
Attainment	2.92	2.091	2.92	2.97.	22.81								

PO / PSO Attainment														
PO/PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Attainment	2.70	1.93	0.97											

Analysis of CO, PO/PSO Attainment [Review of attainment (course attainment)]

Co attainment is Satisfactory

po attainment is also satisfactory

Dept. of Pre Engineering **BGS** Institute of Technology B G Nagara- 571448

Name and A Caiuk, Mandve District.

3GS Institute of Technology

Department of Engineering Physics

						2019	1-20							10.
69 Rd				Acado	emic year			(OD	D / EVE	N) (Fo	8 M.E	· Pa	0980	mme)
Name of the	Faculty	with Desig	gnation		SHAN	IKAR	2A 2	SIR.		Aggt	- Prof	28803	1	
Course Nam	e with co	ode		1	Engg	1	J8109	Lab	P	18 P)H XI -	26		
Feed Back Report No. of Students participated= 30														
Feedback Questions	Q1 Q2		Q3	Q4		Q5	Q6			Q8	Q	9	Q10	
Av. Rating	78.	78% 75% 7		77%	75		78%		78% 75%		78 %	75	- 0/0	78%
Overall Feedback														
						Course	e End Sur	vey						
CO's		CO.1		CO	CO.2		CO.3		CO.4		CO.5		CO.6	
Av. Rating	FIA.	2.50)	2.	38	2	1.53		2.47 2.44 2.				. 56	
						CO	Attainme	nt						
CO's		CO.1		CO	0.2		CO.3		CO.4		CO.5		(CO.6
Attainment		2,70		2	2.68		2.70		2.60	7	2.6	9	2	.70
				11		PO / PS	O Attain	ment						
PO/PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2
Attainment	2,69	1.05	0.9		0.9	0.9			0.9					

Analysis of CO, PO/PSO Attainment [Review of attainment (course attainment)]

Co. attainment is Satisfactory po, attainment is also satisfactory

Dept. of Pre Engineering **BGS** Institute of Technology B G Nagara- 571448

I I I

| | Jai Sri Gurudev | |

3GS Institute of Technology

Department of Engineering Physics

Name of the Faculty with Designation SHANKARA S.R. Askt. Professor		6,					-	2019	7-20			-				
Name of the Faculty with Designation SHANKARA S.R. Ackt Professor						Acad	emic year	2018	-19	(OD)	D / EVEN	V) (FC	or G.S	, Parc	OVYON	mese)
Feed Back Report No. of Students participated= 30	Name of the	Faculty	with	Desig	nation		SHAN									
Feed Back Report No. of Students participated= 30	Course Nam	e with c	ode							Lal	7 4	18	(1	/ (
Feedback Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Av. Rating 78 % 75 % 77 % 75 % 78 % 78 % 75 % 78 % Course End Survey CO's CO.1 CO.2 CO.3 CO.4 CO.5 CO.6 Av. Rating 2 6 2 2 4 2 56 2 4 2 50 Course End Survey CO.5 CO.6 Av. Rating Co.62 Co.3 Co.4 Co.5 Co.6 Co.54 Co.55 Co.65 Co.65 Co.65 Co.65 Co.65 Co.65 Co.75 Co.65 Co.65 Co.65 Co.75 Co.65 Co.65 Co.65 Co.65 Co.75 Co.65 Co.65 Co.65 Co.65 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.75 Co.7	*								0'			S 20 2				4
Questions Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Av. Rating 78 % 75 % 75 % 78 %		V.			Feed	Back Re	port		No.	of Studen	ts partic	ipated= 3	30			
Overall Feedback Course End Survey CO's CO.1 CO.2 CO.3 CO.4 CO.5 CO.6 Av. Rating 2.62 2.41 2.56 2.44 2.62 2.50		Q1 Q2		Q3	Q4		Q5	Q6		Q7	Q8	Q	9	Q10		
Overall Feedback Course End Survey CO's CO.1 CO.2 CO.3 CO.4 CO.5 CO.6 Av. Rating 2.62 2.41 2.56 2.44 2.62 2.50	Av. Rating	g 78 % 75 % 77			77%	75	0/0	78%	78% 78% 75		5%	78%	75	0/0	78%	
CO's CO.1 CO.2 CO.3 CO.4 CO.5 CO.6 Av. Rating 2.62 2.41 2.56 2.44 2.62 2.50																
CO's CO.1 CO.2 CO.3 CO.4 CO.5 CO.6 Av. Rating 2.62 2.41 2.56 2.44 2.62 2.50	Course End Survey															
	CO's		-	CO.	1	C	0.2	7					CO.5		CO.6	
CO Attainment	Av. Rating		2	. 6	2	2	2.41		20156		2,44 2,6		2.68	2 2		50
							(CO	A 44 a 3 m m a a a	-4		/				
	CO's	00.1		C	0.2						CO 5		CC) 6		
			CO.1				-									
Attainment 2.82 2.79 2.81 2.80 2.82 2.80	Attainment	ment 2.82 2.79						2.81		2.80		2186	2	218	30	
PO / PSO Attainment	5 9															
PO/PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2	PO/PSO	PO ₁	P	O2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Attainment 3 1,17 1 1 1 1 1 1	Attainment	3	1	17	1		1	1			1	1 1				

Analysis of CO, PO/PSO Attainment [Review of attainment (course attainment)]

Co, attainment is satisfactory

Po, attainment is also satisfactory

HOD

Dept. of Pre Engineering BGS Institute of Technology

N Sagara- Striags N Sagara- Striags

3GS Institute of Technology

Department of Engineering Physics

			i d	189		201	9-20	-		_			2	
1 to				Acad	emic year	2018	-19	(ODI	D / EVE	N) ((3.8. F	0097C	emme	
Name of the	Faculty w	ith Desig	gnation		SHAN	KAR	A S.	R.		Ass		ofesso		
Course Nam	e with cod	le					15/08	Theor	y	2 18	RPHY -	1 (1	27 22 25	
2														
Feed Back Report No. of Students participated= 30														
Feedback Questions	Q1		Q2	Q3	Q4		Q5	Q6		Q7	Q8	Q		Q10
Av. Rating	74%	, 7	8 0/0	75%	76		74%	779	10 -	76%	78%	76	0/0	78%
10						Over	all Feedba	ıck						
						Cours	e End Sur	vey	*1					
CO's		CO	.1	C	0.2		CO.3	, .	CO.4		CO.5		CC).6
Av. Rating		2.5	6	216	66	6	2.53		2.40	7	2.58	3		
		2				CO	Attainme	nt						
CO's		CO	.1	C	0.2		CO.3		CO.4		CO.5		CC	0.6
Attainment		2.9.	3	2.	95		2.94		2.9	4	2.9	5		
			2]	PO / PS	SO Attain	ment				9	1	
PO/PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Attainment	2.75	1.96	0.98											

Analysis of CO, PO/PSO Attainment [Review of attainment (course attainment)]

Co attainment is satisfactory

po attainment is also satisfactory

Comeons.

HOD

Dept. of Pre Engineering BGS Institute of Technology B G Nagara- 571.118

o ci waga

11.1

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

CO-PO Attainment (18 Scheme)

rse Code	Course Name	Staff Name	Academic Year	Sem	Programme
18PHY22	Engineering Physics	SHANKARA S R	2019	п	B.E/CS

Course Outcome	60%	30%	10%	
	CIE	SEE	CES	TOTAL
CO1	2.97	2.97	2.56	2.93
CO2	2.99	2.97	2.66	2.95
CO3	3.0	2.97	2.53	2.94
CO4	3.0	2.97	2.49	2.94
CO5	3.0	2.97	2.58	2.95

	co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
18C102.1	2.93	3	2										
18C102.2	2.95	2	2	1									
18C102.3	2.94	3	2										
18C102.4	2.94	3	2										
18C102.5	2.95	3	2										
SUM		14	10	1									
AVG		2.8	2	1									
Weighted Sum		41.18	29.42	2.95									
PO Attainment		2.75	1.96	0.98									

Note: 3 =Strong Contribution 2 =Average Contribution

1 = Weak Contribution

HOD

Dept. of Pre Engineering **BGS** Institute of Technology

B G Nagara- 571448

Nagamangala Taluk, Mandya District.

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

CO-PO Attainment (18 Scheme)

Course Code	Course Name	Staff Name	Academic Year	Sem	Programme
18PHY22	Engineering Physics	SHANKARA S R	2019	П	B.E/ME

Course Outcome	60%	30%	10%	
	CIE	SEE	CES	TOTAL
CO1	2.99	2.94	2.44	2.92
CO2	2.99	2.94	2.32	2.91
CO3	2.97	2.94	2.56	2.92
CO4	2.96	2.94	2.59	2.92
CO5	2.81	2.94	2.38	2.81

	co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
18C102.1	2.92	3	2										
18C102.2	2.91	2	2	1									
18C102.3	2.92	3	2										
18C102.4	2.92	3	2						*				
18C102.5	2.81	3	2										
SUM		14	10	1									
AVG		2.8	2	1									
Weighted Sum		40.53	28.96	2.91									
PO Attainment		2.70	1.93	0.97									

Note: 3 =Strong Contribution 2 =Average Contribution

1 = Weak Contribution

medo of HOD HOD

Dept. of Pre Engineering BGS Institute of Technology

B G Nagara- 571448

Nagamangala Taiuk, Mandya District.

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

CO-PO Attainment (18 Scheme)

Course Code	Course Name	Staff Name	Academic Year	Sem	Programme
18PHYL26	Engineering Physics Lab	SHANKARA S R	2019	п	B.E/CS

Course Outcome	60%	30%	10%	
	CIE	SEE	CES	TOTAL
CO1	3.0	2.51	2.62	2.82
CO2	3.0	2.51	2.41	2.79
CO3	3.0	2.51	2.56	2.81
CO4	3.0	2.51	2.44	2.80
CO5	3.0	2.51	2.62	2.82
CO6	3.0	2.51	2.50	2.80

СО	СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
18C102.1	2.82	3	1							1			
18C102.2	2.79	3	1							1			
18C102.3	2.81	3	1							1			
18C102.4	2.80	3	1							1			
18C102.5	2.82	3	1							1			
18C102.6	2.80	3	2	1		1	1			1			
SUM		15	7	1		1	1			6			
AVG		3	1.17	1		1	1			1			
Weighted Sum		50.52	19.64	2.8		2.8	2.8		-	16.84			
PO Attainment		2.81	1.09	0.93		0.93	0.93			0.93			

Note: 3 =Strong Contribution 2 =Average Contribution 1 =Weak Contribution

Course Coordinator

HOD HOD

Dept. of Pre Engineering
BGS Institute of Technology
B G Nagara- 571448
Nagamangala Taluk, Mandya District.

Adichunchanagiri Shikshana Trust (R)

BGS INSTITUTE OF TECHNOLOGY

Department of Engineering Physics

CO-PO Attainment (18 Scheme)

Course Code	Course Name	Staff Name	Academic Year	Sem	Programme
18PHYL26	Engineering Physics Lab	SHANKARA S R	2019	II	B.E/ME

60%	30%	10%	
CIE	SEE	CES	TOTAL
3.0	2.15	2.50	2.70
3.0	2.15	2.38	2.68
3.0	2.15	2.53	2.70
3.0	2.15	2.47	2.69
3.0	2.15	2.44	2.69
3.0	2.15	2.56	2.70
	3.0 3.0 3.0 3.0 3.0	CIE SEE 3.0 2.15 3.0 2.15 3.0 2.15 3.0 2.15 3.0 2.15 3.0 2.15	CIE SEE CES 3.0 2.15 2.50 3.0 2.15 2.38 3.0 2.15 2.53 3.0 2.15 2.47 3.0 2.15 2.44

	СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
18C102.1	2.70	3	1							1			
18C102.2	2.68	3	1							1			
18C102.3	2.70	3	1							1			
18C102.4	2.69	3	1							1			
18C102.5	2.69	3	1							1			
18C102.6	2.70	3	2	1		1	1			1			
SUM		15	7	1		1	1			6			
AVG		3	1.17	1		1	1			1			
Weighted Sum		48.48	18.86										
PO Attainment	t	2.69	1.05	0.9		0.9	0.9			0.9			

Note: 3 = Strong Contribution 2 = Average Contribution 1 = Weak Contribution

Course Coordinator

enveder Je

HOD

HOD

Dept. of Pre Engineering
BGS Institute of Technology
B G Nagara- 571448
Nagamangala Taiuk, Manufer District